Back to list
existential-birds

pydantic-ai-model-integration

by existential-birds

Claude Code plugin for code review skills and verification workflows. Python, Go, React, FastAPI, BubbleTea, and AI frameworks (Pydantic AI, LangGraph, Vercel AI SDK).

11🍴 2📅 Jan 24, 2026

SKILL.md


name: pydantic-ai-model-integration description: Configure LLM providers, use fallback models, handle streaming, and manage model settings in PydanticAI. Use when selecting models, implementing resilience, or optimizing API calls.

PydanticAI Model Integration

Provider Model Strings

Format: provider:model-name

from pydantic_ai import Agent

# OpenAI
Agent('openai:gpt-4o')
Agent('openai:gpt-4o-mini')
Agent('openai:o1-preview')

# Anthropic
Agent('anthropic:claude-sonnet-4-5')
Agent('anthropic:claude-haiku-4-5')

# Google (API Key)
Agent('google-gla:gemini-2.0-flash')
Agent('google-gla:gemini-2.0-pro')

# Google (Vertex AI)
Agent('google-vertex:gemini-2.0-flash')

# Groq
Agent('groq:llama-3.3-70b-versatile')
Agent('groq:mixtral-8x7b-32768')

# Mistral
Agent('mistral:mistral-large-latest')

# Other providers
Agent('cohere:command-r-plus')
Agent('bedrock:anthropic.claude-3-sonnet')

Model Settings

from pydantic_ai import Agent
from pydantic_ai.settings import ModelSettings

agent = Agent(
    'openai:gpt-4o',
    model_settings=ModelSettings(
        temperature=0.7,
        max_tokens=1000,
        top_p=0.9,
        timeout=30.0,  # Request timeout
    )
)

# Override per-run
result = await agent.run(
    'Generate creative text',
    model_settings=ModelSettings(temperature=1.0)
)

Fallback Models

Chain models for resilience:

from pydantic_ai.models.fallback import FallbackModel

# Try models in order until one succeeds
fallback = FallbackModel(
    'openai:gpt-4o',
    'anthropic:claude-sonnet-4-5',
    'google-gla:gemini-2.0-flash'
)

agent = Agent(fallback)
result = await agent.run('Hello')

# Custom fallback conditions
from pydantic_ai.exceptions import ModelAPIError

def should_fallback(error: Exception) -> bool:
    """Only fallback on rate limits or server errors."""
    if isinstance(error, ModelAPIError):
        return error.status_code in (429, 500, 502, 503)
    return False

fallback = FallbackModel(
    'openai:gpt-4o',
    'anthropic:claude-sonnet-4-5',
    fallback_on=should_fallback
)

Streaming Responses

async def stream_response():
    async with agent.run_stream('Tell me a story') as response:
        # Stream text output
        async for chunk in response.stream_output():
            print(chunk, end='', flush=True)

    # Access final result after streaming
    print(f"\nTokens used: {response.usage().total_tokens}")

Streaming with Structured Output

from pydantic import BaseModel

class Story(BaseModel):
    title: str
    content: str
    moral: str

agent = Agent('openai:gpt-4o', output_type=Story)

async with agent.run_stream('Write a fable') as response:
    # For structured output, stream_output yields partial JSON
    async for partial in response.stream_output():
        print(partial)  # Partial Story object as parsed

    # Final validated result
    story = response.output

Dynamic Model Selection

import os

# Environment-based selection
model = os.getenv('PYDANTIC_AI_MODEL', 'openai:gpt-4o')
agent = Agent(model)

# Runtime model override
result = await agent.run(
    'Hello',
    model='anthropic:claude-sonnet-4-5'  # Override default
)

# Context manager override
with agent.override(model='google-gla:gemini-2.0-flash'):
    result = agent.run_sync('Hello')

Deferred Model Checking

Delay model validation for testing:

# Default: Validates model immediately (checks env vars)
agent = Agent('openai:gpt-4o')

# Deferred: Validates only on first run
agent = Agent('openai:gpt-4o', defer_model_check=True)

# Useful for testing with override
with agent.override(model=TestModel()):
    result = agent.run_sync('Test')  # No OpenAI key needed

Usage Tracking

result = await agent.run('Hello')

# Request usage (last request)
usage = result.usage()
print(f"Input tokens: {usage.input_tokens}")
print(f"Output tokens: {usage.output_tokens}")
print(f"Total tokens: {usage.total_tokens}")

# Full run usage (all requests in run)
run_usage = result.run_usage()
print(f"Total requests: {run_usage.requests}")

Usage Limits

from pydantic_ai.usage import UsageLimits

# Limit token usage
result = await agent.run(
    'Generate content',
    usage_limits=UsageLimits(
        total_tokens=1000,
        request_tokens=500,
        response_tokens=500,
    )
)

Provider-Specific Features

OpenAI

from pydantic_ai.models.openai import OpenAIModel

model = OpenAIModel(
    'gpt-4o',
    api_key='your-key',  # Or use OPENAI_API_KEY env var
    base_url='https://custom-endpoint.com'  # For Azure, proxies
)

Anthropic

from pydantic_ai.models.anthropic import AnthropicModel

model = AnthropicModel(
    'claude-sonnet-4-5',
    api_key='your-key'  # Or ANTHROPIC_API_KEY
)

Common Model Patterns

Use CaseRecommendation
General purposeopenai:gpt-4o or anthropic:claude-sonnet-4-5
Fast/cheapopenai:gpt-4o-mini or anthropic:claude-haiku-4-5
Long contextanthropic:claude-sonnet-4-5 (200k) or google-gla:gemini-2.0-flash
Reasoningopenai:o1-preview
Cost-sensitive prodFallbackModel with fast model first

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon