Back to list
existential-birds

llm-judge

by existential-birds

Claude Code plugin for code review skills and verification workflows. Python, Go, React, FastAPI, BubbleTea, and AI frameworks (Pydantic AI, LangGraph, Vercel AI SDK).

11🍴 2📅 Jan 24, 2026

SKILL.md


name: llm-judge description: LLM-as-judge methodology for comparing code implementations across repositories. Scores implementations on functionality, security, test quality, overengineering, and dead code using weighted rubrics. Used by /beagle:llm-judge command.

LLM Judge Skill

Compare code implementations across 2+ repositories using structured evaluation.

Overview

This skill implements a two-phase LLM-as-judge evaluation:

  1. Phase 1: Fact Gathering - Parallel agents explore each repo and extract structured facts
  2. Phase 2: Judging - Parallel judges score each dimension using consistent rubrics

Reference Files

FilePurpose
references/fact-schema.mdJSON schema for Phase 1 facts
references/scoring-rubrics.mdDetailed rubrics for each dimension
references/repo-agent.mdInstructions for Phase 1 agents
references/judge-agents.mdInstructions for Phase 2 judges

Scoring Dimensions

DimensionDefault WeightEvaluates
Functionality30%Spec compliance, test pass rate
Security25%Vulnerabilities, security patterns
Test Quality20%Coverage, DRY, mock boundaries
Overengineering15%Unnecessary complexity
Dead Code10%Unused code, TODOs

Scoring Scale

ScoreMeaning
5Excellent - Exceeds expectations
4Good - Meets requirements, minor issues
3Average - Functional but notable gaps
2Below Average - Significant issues
1Poor - Fails basic requirements

Phase 1: Spawning Repo Agents

For each repository, spawn a Task agent with:

You are a Phase 1 Repo Agent for the LLM Judge evaluation.

**Your Repo:** $REPO_LABEL at $REPO_PATH
**Spec Document:**
$SPEC_CONTENT

**Instructions:** Read @beagle:llm-judge references/repo-agent.md

Gather facts and return a JSON object following the schema in references/fact-schema.md.

Load @beagle:llm-artifacts-detection for dead code and overengineering analysis.

Return ONLY valid JSON, no markdown or explanations.

Phase 2: Spawning Judge Agents

After all Phase 1 agents complete, spawn 5 judge agents (one per dimension):

You are the $DIMENSION Judge for the LLM Judge evaluation.

**Spec Document:**
$SPEC_CONTENT

**Facts from all repos:**
$ALL_FACTS_JSON

**Instructions:** Read @beagle:llm-judge references/judge-agents.md

Score each repo on $DIMENSION using the rubric in references/scoring-rubrics.md.

Return ONLY valid JSON following the judge output schema.

Aggregation

After Phase 2 completes:

  1. Collect scores from all 5 judges
  2. For each repo, compute weighted total:
    weighted_total = sum(score[dim] * weight[dim]) / 100
    
  3. Rank repos by weighted total (descending)
  4. Generate verdict explaining the ranking

Output

Write results to .beagle/llm-judge-report.json and display markdown summary.

Dependencies

  • @beagle:llm-artifacts-detection - Reused by repo agents for dead code/overengineering

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon