← Back to list

agent-contracts-routing-tuning
by yatarousan0227
Contract-driven architecture for building LangGraph agents with declarative node definitions, automatic graph construction, and hybrid rule/LLM-based routing.
⭐ 6🍴 0📅 Jan 20, 2026
SKILL.md
name: agent-contracts-routing-tuning description: Tune routing with TriggerCondition priorities, LLM hints, context_builder, and traceable decisions. metadata: short-description: Routing design and debugging
agent-contracts Routing Tuning
Use this skill when you are designing or debugging routing behavior (rule matches vs LLM selection).
Routing Model (what to optimize)
- Rule filtering via
TriggerCondition(when/when_not, priority) - Candidate selection (top matches + ties)
- Optional LLM decision among candidates (with
llm_hint) - Fallbacks and terminal states (
response.response_type)
Practical Tuning Steps
- Make rule-based selection deterministic first (LLM off).
- Use priorities to express business rules (100+ = critical, 50-99 = main, 1-49 = fallback).
- Add
llm_hintonly where ambiguity remains after rules. - Use
context_builderonly when needed; keep default minimal slices. - Debug with
decide_with_trace()and inspect matched rules.
Guardrails
- Prefer rules for safety/constraints; use LLM for ambiguous intent.
- Keep candidate sets small and explainable.
- Treat
response.response_typeterminal values as part of routing design.
References (load only when needed)
docs/core_concepts.md(Traceable Routing / Context Builder)examples/02_routing_explain.pydocs/skills/official/agent-contracts-routing-tuning/references/debug_playbook.md
Score
Total Score
75/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
✓説明文
100文字以上の説明がある
+10
○人気
GitHub Stars 100以上
0/15
✓最近の活動
1ヶ月以内に更新
+10
○フォーク
10回以上フォークされている
0/5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon

