Back to list
shinpr

prompt-optimization

by shinpr

Compare, improve, and verify prompt changes with evidence — not vibes.

7🍴 0📅 Jan 19, 2026

SKILL.md


name: prompt-optimization description: Model-agnostic prompt analysis and optimization patterns based on 2025-2026 research. Use when analyzing prompts for issues or generating optimized versions. Provides 8 patterns (BP-001 through BP-008) and 3-step optimization flow.

Prompt Optimization Skill

Core Philosophy

  1. Model-Agnostic: Patterns effective across GPT, Claude, Gemini, etc.
  2. Evidence-Based: Based on peer-reviewed research and industry consensus
  3. Actionable: Each detection provides specific, implementable improvements
  4. Non-Destructive: Suggest improvements while preserving user intent and minimizing constraint creep

Pattern Detection

P1: Critical (Must Fix)

High confidence research evidence for negative impact.

IDPatternResearch Basis
BP-001Negative InstructionsAttention mechanism structural issue. 75% failure rate in ArXiv studies
BP-002Vague InstructionsPrimary failure cause. 40% of performance variance
BP-003Missing Output FormatDirectly linked to hallucination reduction

P2: High Impact (Should Fix)

Consistent improvement when addressed.

IDPatternResearch Basis
BP-004Unstructured Prompt"Structure > Length" confirmed
BP-005Missing Context"More context = higher accuracy" confirmed
BP-006Complex Task Without DecompositionICLR 2023: 28% error reduction with decomposition

P3: Enhancement (Could Fix)

Incremental improvements in specific contexts.

IDPatternResearch Basis
BP-007Biased Examples40% of few-shot effectiveness depends on exemplar selection
BP-008No Uncertainty PermissionAllowing "I don't know" reduces hallucination

3-Step Optimization Flow

Step 1: Initial Analysis

Input: Target prompt Process: Detect patterns (BP-001 through BP-008) Output: .claude/.rashomon/step1-analysis.md

Contents:

  • Detected issues by severity
  • Location in prompt
  • Original prompt preserved

Step 2: Optimization

Input: Step 1 analysis Process:

  • Evaluate precision contribution
  • Consolidate redundant improvements
  • Apply in priority order (P1 > P2 > P3) Output: .claude/.rashomon/step2-optimized.md

Contents:

  • Before/after for each change
  • Rationale
  • Optimized prompt

Step 3: Balance Adjustment

Input: Step 2 output Process:

  • Reference references/execution-quality.yaml
  • Confirm all critical aspects are preserved
  • Confirm constraints are proportionate Output: Final optimized prompt

CRITICAL: Clean up temporary files after completion.

Conditional Application

BP-004 (Unstructured)

Apply 4-block pattern IF:

  • Prompt longer than 3 sentences
  • Contains multiple distinct instructions
  • Has implicit section boundaries

Skip when:

  • Single simple instruction
  • Already clearly structured
  • Structure would add unnecessary verbosity

BP-006 (Decomposition)

Decompose IF:

  • 3+ distinct objectives
  • Sequential dependencies
  • Each step can be quality-checked

Key Insight: Goal is EVALUABLE GRANULARITY with QUALITY CHECKPOINTS, not decomposition itself.

Improvement Classification

ClassificationDefinitionInterpretation
StructuralPrompt structure, clarity, specificity improvementsPrompt writing technique
Context AdditionProject-specific information added from codebase investigationInformation advantage
ExpressiveDifferent phrasing, equivalent substanceNeutral
VarianceWithin LLM probabilistic varianceOriginal prompt sufficient

Principle: Distinguish between prompt writing improvements (Structural) and information additions (Context Addition).

Reference: references/execution-quality.yaml for detailed criteria.

References

  • references/patterns.yaml - Detailed pattern definitions
  • references/execution-quality.yaml - Quality evaluation criteria

Score

Total Score

55/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon