← Back to list

retail-agent-learner
by lavinigam-gcp
Design patterns and production-ready architectures for building multi-agent AI systems with Google ADK.
⭐ 3🍴 1📅 Jan 23, 2026
SKILL.md
name: retail-agent-learner description: Learn ADK concepts and understand the retail agent pipeline. Use when asking how the agent works, what ADK is, wanting to understand the architecture, state flow, or individual agent purposes.
Retail Agent Learner
Pipeline Overview
This is an 8-agent pipeline for retail site selection analysis:
User Query
↓
IntakeAgent ────────────→ Extract location + business type
↓
MarketResearchAgent ────→ Google Search for demographics
↓
CompetitorMappingAgent ─→ Google Maps Places API
↓
GapAnalysisAgent ───────→ Python code execution (pandas)
↓
StrategyAdvisorAgent ───→ Extended thinking synthesis
↓
ParallelAgent ──────────→ Concurrent artifact generation
├── ReportGenerator ─→ HTML report
├── InfographicAgent → Image generation
└── AudioOverview ───→ TTS podcast audio
What Each Agent Does
| Agent | Purpose | Key Tool/Feature |
|---|---|---|
| IntakeAgent | Parse user request | AgentTool pattern |
| MarketResearchAgent | Find market data | google_search built-in |
| CompetitorMappingAgent | Map competitors | Google Maps API |
| GapAnalysisAgent | Calculate viability | Code execution (pandas) |
| StrategyAdvisorAgent | Synthesize recommendations | Extended thinking |
| ReportGenerator | Create HTML report | Artifact generation |
| InfographicAgent | Generate visual | Image generation |
| AudioOverview | Create podcast audio | TTS multi-speaker |
Key ADK Concepts
Agents
- LlmAgent: Single LLM call with tools and instructions
- SequentialAgent: Runs sub-agents one after another
- ParallelAgent: Runs sub-agents concurrently
State Flow
Data passes between agents via session state:
IntakeAgent → state["target_location"], state["business_type"]
MarketResearchAgent → state["market_research_findings"]
CompetitorMappingAgent → state["competitor_analysis"]
GapAnalysisAgent → state["gap_analysis"]
StrategyAdvisorAgent → state["strategic_report"]
Tools
Functions that agents can call to perform actions. Access state via ToolContext.
Callbacks
Lifecycle hooks: before_agent_callback and after_agent_callback.
Learning Path
Start with the 9-part tutorial series:
- Part 1: Setup + First Agent
- Part 2: IntakeAgent
- Part 3: MarketResearchAgent
- Part 4: CompetitorMappingAgent
- Part 5: GapAnalysisAgent (code execution)
- Part 6: StrategyAdvisorAgent (extended thinking)
- Part 7: ArtifactGeneration (parallel outputs)
- Part 8: Testing
- Part 9: Production Deployment
[See references/architecture.md for detailed data flow] [See references/adk-concepts.md for ADK deep dive]
Score
Total Score
65/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
○LICENSE
ライセンスが設定されている
0/10
✓説明文
100文字以上の説明がある
+10
○人気
GitHub Stars 100以上
0/15
✓最近の活動
1ヶ月以内に更新
+10
○フォーク
10回以上フォークされている
0/5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon

