Back to list
terrylica

rangebar-eval-metrics

by terrylica

Claude Code Skills Marketplace: plugins, skills for ADR-driven development, DevOps automation, ClickHouse management, semantic versioning, and productivity workflows

7🍴 1📅 Jan 24, 2026

SKILL.md


name: rangebar-eval-metrics description: > SOTA metrics for evaluating range bar (price-based sampling) financial data. Use when computing Sharpe ratios, risk metrics, ML prediction quality for range bars. TRIGGERS - range bar metrics, evaluate range bars, Sharpe ratio range bars, WFO metrics, walk-forward metrics, BiLSTM evaluation, crypto metrics, daily aggregation, sqrt(7), sqrt(365), PSR DSR MinTRL, IC information coefficient. allowed-tools: Read, Grep, Glob, Bash

Range Bar Evaluation Metrics

Machine-readable reference + computation scripts for state-of-the-art metrics evaluating range bar (price-based sampling) data.

Quick Start

# Compute metrics from predictions + actuals
python scripts/compute_metrics.py --predictions preds.npy --actuals actuals.npy --timestamps ts.npy

# Generate full evaluation report
python scripts/generate_report.py --results folds.jsonl --output report.md

Metric Tiers

TierPurposeMetricsCompute
Primary (5)Research decisionsweekly_sharpe, hit_rate, cumulative_pnl, n_bars, positive_sharpe_ratePer-fold + aggregate
Secondary/Risk (5)Additional contextmax_drawdown, bar_sharpe, return_per_bar, profit_factor, cv_fold_returnsPer-fold
ML Quality (3)Prediction healthic, prediction_autocorr, is_collapsedPer-fold
Diagnostic (5)Final validationpsr, dsr, autocorr_lag1, effective_n, binomial_pvalueAggregate only
Extended Risk (5)Deep risk analysisvar_95, cvar_95, omega_ratio, sortino_ratio, ulcer_indexPer-fold (optional)

Why Range Bars Need Special Treatment

Range bars violate standard IID assumptions:

  1. Variable duration: Bars form based on price movement, not time
  2. Autocorrelation: High-volatility periods cluster bars → temporal correlation
  3. Non-constant information: More bars during volatility = more information per day

Canonical solution: Daily aggregation via _group_by_day() before Sharpe calculation.

References

Core Reference Files

TopicReference File
Sharpe Ratio Calculationssharpe-formulas.md
Risk Metrics (VaR, Omega, Ulcer)risk-metrics.md
ML Prediction Quality (IC, Autocorr)ml-prediction-quality.md
Crypto Market Considerationscrypto-markets.md
Temporal Aggregation Rulestemporal-aggregation.md
JSON Schema for Metricsmetrics-schema.md
Anti-Patterns (Transaction Costs)anti-patterns.md
SOTA 2025-2026 (SHAP, BOCPD, etc.)sota-2025-2026.md
Worked Examples (BTC, EUR/USD)worked-examples.md
Structured Logging (NDJSON)structured-logging.md
SkillRelationship
adaptive-wfo-epochUses weekly_sharpe, psr, dsr for WFE calculation

Dependencies

pip install -r requirements.txt
# Or: pip install numpy>=1.24 pandas>=2.0 scipy>=1.10

Key Formulas

Daily-Aggregated Sharpe (Primary Metric)

def weekly_sharpe(pnl: np.ndarray, timestamps: np.ndarray) -> float:
    """Sharpe with daily aggregation for range bars."""
    daily_pnl = _group_by_day(pnl, timestamps)  # Sum PnL per calendar day
    if len(daily_pnl) < 2 or np.std(daily_pnl) == 0:
        return 0.0
    daily_sharpe = np.mean(daily_pnl) / np.std(daily_pnl)
    # For crypto (7-day week): sqrt(7). For equities: sqrt(5)
    return daily_sharpe * np.sqrt(7)  # Crypto default

Information Coefficient (Prediction Quality)

from scipy.stats import spearmanr

def information_coefficient(predictions: np.ndarray, actuals: np.ndarray) -> float:
    """Spearman rank IC - captures magnitude alignment."""
    ic, _ = spearmanr(predictions, actuals)
    return ic  # Range: [-1, 1]. >0.02 acceptable, >0.05 good, >0.10 excellent

Probabilistic Sharpe Ratio (Statistical Validation)

from scipy.stats import norm

def psr(sharpe: float, se: float, benchmark: float = 0.0) -> float:
    """P(true Sharpe > benchmark)."""
    return norm.cdf((sharpe - benchmark) / se)

Annualization Factors

MarketDaily → WeeklyDaily → AnnualRationale
Crypto (24/7)sqrt(7) = 2.65sqrt(365) = 19.17 trading days/week
Equitysqrt(5) = 2.24sqrt(252) = 15.95 trading days/week

NEVER use sqrt(252) for crypto markets.

CRITICAL: Session Filter Changes Annualization

ViewFilterdays_per_weekRationale
Session-filtered (London-NY)Weekdays 08:00-16:00sqrt(5)Trading like equities
All-bars (unfiltered)Nonesqrt(7)Full 24/7 crypto

Using sqrt(7) for session-filtered data overstates Sharpe by ~18%!

See crypto-markets.md for detailed rationale.

Dual-View Metrics

For comprehensive analysis, compute metrics with BOTH views:

  1. Session-filtered (London 08:00 to NY 16:00): Primary strategy evaluation
  2. All-bars: Regime detection, data quality diagnostics

Academic References

ConceptCitation
Deflated Sharpe RatioBailey & López de Prado (2014)
Sharpe SE with Non-NormalityMertens (2002)
Statistics of Sharpe RatiosLo (2002)
Omega RatioKeating & Shadwick (2002)
Ulcer IndexPeter Martin (1987)

Decision Framework

Go Criteria (Research)

go_criteria:
  - positive_sharpe_rate > 0.55
  - mean_weekly_sharpe > 0
  - cv_fold_returns < 1.5
  - mean_hit_rate > 0.50

Publication Criteria

publication_criteria:
  - binomial_pvalue < 0.05
  - psr > 0.85
  - dsr > 0.50 # If n_trials > 1

Scripts

ScriptPurpose
scripts/compute_metrics.pyCompute all metrics from predictions/actuals
scripts/generate_report.pyGenerate Markdown report from fold results
scripts/validate_schema.pyValidate metrics JSON against schema

Remediations (2026-01-19 Multi-Agent Audit)

The following fixes were applied based on a 12-subagent adversarial audit:

IssueRoot CauseFixSource
weekly_sharpe=0Constant predictionsModel collapse detection + architecture fixmodel-expert
IC=NoneZero variance predictionsReturn 1.0 for constant (semantically correct)model-expert
prediction_autocorr=NaNDivision by zeroGuard for std < 1e-10, return 1.0model-expert
Ulcer Index divide-by-zeroPeak equity = 0Guard with np.where(peak > 1e-10, ...)risk-analyst
Omega/Profit Factor unreliableToo few samplesmin_days parameter (default: 5)robustness-analyst
BiLSTM mean collapseArchitecture too smallhidden_size: 16→48, dropout: 0.5→0.3model-expert
profit_factor=1.0 (n_bars=0)Early return wrong valueReturn NaN when no data to compute ratiorisk-analyst

Model Collapse Detection

# ALWAYS check for model collapse after prediction
pred_std = np.std(predictions)
if pred_std < 1e-6:
    logger.warning(
        f"Constant predictions detected (std={pred_std:.2e}). "
        "Model collapsed to mean - check architecture."
    )
# BEFORE (causes collapse on range bars)
HIDDEN_SIZE = 16
DROPOUT = 0.5

# AFTER (prevents collapse)
HIDDEN_SIZE = 48  # Triple capacity
DROPOUT = 0.3     # Less aggressive regularization

See reference docs for complete implementation details.

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon