Back to list
terrylica

impl-standards

by terrylica

Claude Code Skills Marketplace: plugins, skills for ADR-driven development, DevOps automation, ClickHouse management, semantic versioning, and productivity workflows

7🍴 1📅 Jan 24, 2026

SKILL.md


name: impl-standards description: Core engineering standards during implementation. Use when implementing features, writing production code, or when user mentions error handling, constants management, progress logging, or code quality standards.

Implementation Standards

Apply these standards during implementation to ensure consistent, maintainable code.

When to Use This Skill

  • During /itp:go Phase 1
  • When writing new production code
  • User mentions "error handling", "constants", "magic numbers", "progress logging"
  • Before release to verify code quality

Quick Reference

StandardRule
ErrorsRaise + propagate; no fallback/default/retry/silent
ConstantsAbstract magic numbers into semantic, version-agnostic dynamic constants
DependenciesPrefer OSS libs over custom code; no backward-compatibility needed
ProgressOperations >1min: log status every 15-60s
Logslogs/{adr-id}-YYYYMMDD_HHMMSS.log (nohup)
MetadataOptional: catalog-info.yaml for service discovery

Error Handling

Core Rule: Raise + propagate; no fallback/default/retry/silent

# ✅ Correct - raise with context
def fetch_data(url: str) -> dict:
    response = requests.get(url)
    if response.status_code != 200:
        raise APIError(f"Failed to fetch {url}: {response.status_code}")
    return response.json()

# ❌ Wrong - silent catch
try:
    result = fetch_data()
except Exception:
    pass  # Error hidden

See Error Handling Reference for detailed patterns.


Constants Management

Core Rule: Abstract magic numbers into semantic constants

# ✅ Correct - named constant
DEFAULT_API_TIMEOUT_SECONDS = 30
response = requests.get(url, timeout=DEFAULT_API_TIMEOUT_SECONDS)

# ❌ Wrong - magic number
response = requests.get(url, timeout=30)

See Constants Management Reference for patterns.


Progress Logging

For operations taking more than 1 minute, log status every 15-60 seconds:

import logging
from datetime import datetime

logger = logging.getLogger(__name__)

def long_operation(items: list) -> None:
    total = len(items)
    last_log = datetime.now()

    for i, item in enumerate(items):
        process(item)

        # Log every 30 seconds
        if (datetime.now() - last_log).seconds >= 30:
            logger.info(f"Progress: {i+1}/{total} ({100*(i+1)//total}%)")
            last_log = datetime.now()

    logger.info(f"Completed: {total} items processed")

Log File Convention

Save logs to: logs/{adr-id}-YYYYMMDD_HHMMSS.log

# Running with nohup
nohup python script.py > logs/2025-12-01-my-feature-20251201_143022.log 2>&1 &


Data Processing

Core Rule: Prefer Polars over Pandas for dataframe operations.

ScenarioRecommendation
New data pipelinesUse Polars (30x faster, lazy eval)
ML feature engPolars → Arrow → NumPy (zero-copy)
MLflow loggingPandas OK (add exception comment)
Legacy code fixesKeep existing library

Exception mechanism: Add at file top:

# polars-exception: MLflow requires Pandas DataFrames
import pandas as pd

See ml-data-pipeline-architecture for decision tree and benchmarks.


SkillPurpose
adr-code-traceabilityAdd ADR references to code
code-hardcode-auditDetect hardcoded values before release
semantic-releaseVersion management and release automation
ml-data-pipeline-architecturePolars/Arrow efficiency patterns

Reference Documentation

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon