
impl-standards
by terrylica
Claude Code Skills Marketplace: plugins, skills for ADR-driven development, DevOps automation, ClickHouse management, semantic versioning, and productivity workflows
SKILL.md
name: impl-standards description: Core engineering standards during implementation. Use when implementing features, writing production code, or when user mentions error handling, constants management, progress logging, or code quality standards.
Implementation Standards
Apply these standards during implementation to ensure consistent, maintainable code.
When to Use This Skill
- During
/itp:goPhase 1 - When writing new production code
- User mentions "error handling", "constants", "magic numbers", "progress logging"
- Before release to verify code quality
Quick Reference
| Standard | Rule |
|---|---|
| Errors | Raise + propagate; no fallback/default/retry/silent |
| Constants | Abstract magic numbers into semantic, version-agnostic dynamic constants |
| Dependencies | Prefer OSS libs over custom code; no backward-compatibility needed |
| Progress | Operations >1min: log status every 15-60s |
| Logs | logs/{adr-id}-YYYYMMDD_HHMMSS.log (nohup) |
| Metadata | Optional: catalog-info.yaml for service discovery |
Error Handling
Core Rule: Raise + propagate; no fallback/default/retry/silent
# ✅ Correct - raise with context
def fetch_data(url: str) -> dict:
response = requests.get(url)
if response.status_code != 200:
raise APIError(f"Failed to fetch {url}: {response.status_code}")
return response.json()
# ❌ Wrong - silent catch
try:
result = fetch_data()
except Exception:
pass # Error hidden
See Error Handling Reference for detailed patterns.
Constants Management
Core Rule: Abstract magic numbers into semantic constants
# ✅ Correct - named constant
DEFAULT_API_TIMEOUT_SECONDS = 30
response = requests.get(url, timeout=DEFAULT_API_TIMEOUT_SECONDS)
# ❌ Wrong - magic number
response = requests.get(url, timeout=30)
See Constants Management Reference for patterns.
Progress Logging
For operations taking more than 1 minute, log status every 15-60 seconds:
import logging
from datetime import datetime
logger = logging.getLogger(__name__)
def long_operation(items: list) -> None:
total = len(items)
last_log = datetime.now()
for i, item in enumerate(items):
process(item)
# Log every 30 seconds
if (datetime.now() - last_log).seconds >= 30:
logger.info(f"Progress: {i+1}/{total} ({100*(i+1)//total}%)")
last_log = datetime.now()
logger.info(f"Completed: {total} items processed")
Log File Convention
Save logs to: logs/{adr-id}-YYYYMMDD_HHMMSS.log
# Running with nohup
nohup python script.py > logs/2025-12-01-my-feature-20251201_143022.log 2>&1 &
Data Processing
Core Rule: Prefer Polars over Pandas for dataframe operations.
| Scenario | Recommendation |
|---|---|
| New data pipelines | Use Polars (30x faster, lazy eval) |
| ML feature eng | Polars → Arrow → NumPy (zero-copy) |
| MLflow logging | Pandas OK (add exception comment) |
| Legacy code fixes | Keep existing library |
Exception mechanism: Add at file top:
# polars-exception: MLflow requires Pandas DataFrames
import pandas as pd
See ml-data-pipeline-architecture for decision tree and benchmarks.
Related Skills
| Skill | Purpose |
|---|---|
adr-code-traceability | Add ADR references to code |
code-hardcode-audit | Detect hardcoded values before release |
semantic-release | Version management and release automation |
ml-data-pipeline-architecture | Polars/Arrow efficiency patterns |
Reference Documentation
- Error Handling - Raise + propagate patterns
- Constants Management - Magic number abstraction
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon

