Back to list
terrylica

doppler-workflows

by terrylica

Claude Code Skills Marketplace: plugins, skills for ADR-driven development, DevOps automation, ClickHouse management, semantic versioning, and productivity workflows

7🍴 1📅 Jan 24, 2026

SKILL.md


name: doppler-workflows description: Manages credentials and publishing workflows via Doppler. Use when publishing Python packages to PyPI, rotating AWS credentials, or managing secrets with Doppler. allowed-tools: Read, Bash

Doppler Credential Workflows

Quick Reference

When to use this skill:

  • Publishing Python packages to PyPI
  • Rotating AWS access keys
  • Managing credentials across multiple services
  • Troubleshooting authentication failures (403, InvalidClientTokenId)
  • Setting up Doppler credential injection patterns
  • Multi-token/multi-account strategies

Core Pattern: Doppler CLI

Standard Usage:

doppler run --project <project> --config <config> --command='<command>'

Why --command flag:

  • Official Doppler pattern (auto-detects shell)
  • Ensures variables expand AFTER Doppler injects them
  • Without it: shell expands $VAR before Doppler runs → empty string

Quick Start Examples

PyPI Publishing

doppler run --project claude-config --config dev \
  --command='uv publish --token "$PYPI_TOKEN"'

AWS Operations

doppler run --project aws-credentials --config dev \
  --command='aws s3 ls --region $AWS_DEFAULT_REGION'

Best Practices

  1. Always use --command flag for credential injection
  2. Use project-scoped tokens (PyPI) for better security
  3. Rotate credentials regularly (90 days recommended)
  4. Document with Doppler notes: doppler secrets notes set <SECRET> "<note>"
  5. Use stdin for storing secrets: echo -n 'secret' | doppler secrets set
  6. Test injection before using: echo ${#VAR} to verify length
  7. Multi-token naming: SERVICE_TOKEN_{ABBREV} for clarity

Reference Documentation

For detailed information, see:

Bundled Specifications:

  • PYPI_REFERENCE.yaml - Complete PyPI spec
  • AWS_SPECIFICATION.yaml - AWS credential architecture

For local development, mise [env] provides a simpler alternative to doppler run:

# .mise.toml
[env]
# Fetch from Doppler with caching for performance
PYPI_TOKEN = "{{ cache(key='pypi_token', duration='1h', run='doppler secrets get PYPI_TOKEN --project claude-config --config prd --plain') }}"

# For GitHub multi-account setups
GH_TOKEN = "{{ read_file(path=env.HOME ~ '/.claude/.secrets/gh-token-accountname') | trim }}"

When to use mise [env]:

  • Per-directory credential configuration
  • Multi-account GitHub setups
  • Credentials that persist across commands (not session-scoped)

When to use doppler run:

  • CI/CD pipelines
  • Single-command credential scope
  • When you want credentials auto-cleared after command

See mise-configuration skill for complete patterns.


PyPI Publishing Policy

For PyPI publishing, see pypi-doppler skill for LOCAL-ONLY workspace policy.

Do NOT configure PyPI publishing in GitHub Actions or CI/CD pipelines.

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon