
ccg-rag
by phuongrealmax
Code Guardian Studio – AI-powered code refactor engine for large repositories, built on Claude Code + MCP.
SKILL.md
name: ccg-rag description: "Use this skill for semantic code search and codebase understanding. CCG-RAG provides intelligent retrieval using code embeddings and knowledge graphs." allowed-tools:
- mcp__code-guardian__rag_*
- mcp__code-guardian__documents_*
CCG-RAG: Semantic Codebase Search
Intelligent code and documentation retrieval using embeddings and knowledge graphs.
When to Use
Activate this skill when:
- Need to understand unfamiliar codebase
- Searching for code by functionality (not just text)
- Finding related code patterns
- Building context for complex tasks
Core Capabilities
1. Code Search
rag_query - Semantic search across codebase
rag_related_code - Find similar code patterns
rag_build_index - Index/reindex codebase
2. Document Search
documents_search - Search documentation
documents_find_by_type - Find docs by type (api, guide, spec)
documents_list - List all indexed documents
Search Modes
Semantic Search
Find code by describing what it does:
"authentication middleware"
"error handling functions"
"database connection setup"
Pattern Search
Find similar implementations:
"find functions similar to validateUser"
"show me other API endpoints"
"related test patterns"
Documentation Search
"API documentation for auth"
"setup guide for database"
"architecture decisions"
How It Works
Code Chunking
- Functions and classes extracted as units
- Tree-sitter parsing for accurate boundaries
- Preserves context (imports, comments)
Embeddings
- Code-specific embeddings (UniXcoder/Qwen3)
- Natural language descriptions for each chunk
- Hybrid search: semantic + keyword
Knowledge Graph
- Function call relationships
- Import/export dependencies
- Type hierarchies
Example Usage
Find Authentication Code
User: "Find all code related to user authentication"
rag_query({ query: "user authentication login session" })
Results:
1. src/auth/login.ts:authenticate() - Main login handler
2. src/middleware/auth.ts:verifyToken() - JWT verification
3. src/services/session.ts:createSession() - Session management
Find Similar Patterns
User: "Show me code similar to the error handler in api.ts"
rag_related_code({ file: "src/api.ts", function: "handleError" })
Results:
1. src/services/db.ts:handleDbError() - 85% similar
2. src/utils/errors.ts:formatError() - 72% similar
Search Documentation
User: "Find API documentation for payments"
documents_search({ query: "payment API integration" })
Results:
1. docs/api/payments.md - Payment API Reference
2. docs/guides/stripe-integration.md - Stripe Setup Guide
Two-Stage Retrieval
For accurate results, CCG-RAG uses:
- Vector Search - Fast semantic matching
- LLM Rerank - Intelligent relevance scoring
Query → Embed → Top 20 candidates → LLM rerank → Top 5 results
Index Management
Build Index
rag_build_index({
paths: ["src/", "lib/"],
exclude: ["node_modules", "dist"],
languages: ["typescript", "javascript"]
})
Index Status
rag_status()
{
"indexed_files": 245,
"chunks": 1847,
"last_updated": "2025-12-04T08:00:00Z",
"embedding_model": "qwen3-embedding-8b"
}
Best Practices
- Natural language queries - Describe what you're looking for
- Combine with memory - Store important findings
- Use for context - Build understanding before changes
- Keep index fresh - Rebuild after major changes
Integration with Latent Mode
RAG enhances Latent Chain Mode:
🔍 [analysis]
1. rag_query({ query: "current auth implementation" })
2. Identify hot spots from RAG results
3. Build comprehensive codeMap
📋 [plan]
1. rag_related_code({ function: "targetFunction" })
2. Find similar patterns to follow
3. Plan patches based on existing conventions
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
3ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon


