
code-analyzer
by petbrains
Document-Driven Development framework for Claude Code — structured specs, TDD cycles, feedback loops, and skills system
SKILL.md
name: code-analyzer description: "Comprehensive codebase analysis for building mental model of project structure, dependencies, and implementation context. Use when needing to: (1) Understand project architecture before review or documentation, (2) Find dependencies and shared modules, (3) Locate implementation markers (AICODE-), (4) Prepare context for review, memory generation, or agent creation. Triggers on: analyze code, load code context, scan codebase, understand project structure." allowed-tools: Read, Bash ()
Code Analyzer
Analyze codebase to build comprehensive mental model for downstream operations.
Workflow Overview
- Scan — Collect facts via bash script (deterministic)
- Understand — Interpret structure and stack
- Build — Construct dependency graph and mental model
- Confirm — Ready for operations
Step 1: Scan Project
Run codebase scanner to collect facts:
.claude/skills/code-analyzer/scripts/scan-codebase.sh
Scanner auto-detects project root (git root or pwd) and collects:
- Structure: file count, extensions, configs, directories, src modules
- Markers: AICODE-NOTE, AICODE-TODO, AICODE-FIX with locations
- Git: branch, modified/added/deleted files
Outputs JSON. No external dependencies required.
Exclusions (automatic)
- node_modules, .git, dist, build
- pycache, .venv, venv
- ai-docs, .next, .nuxt, coverage, .cache
Step 2: Understand Structure
Interpret scan results to determine:
- Stack: Language(s) from extensions, framework from configs
- Entry points: Main/index/app files in directories
- Modules: Domain boundaries from src_modules or directories
- Conventions: Naming patterns, structure style
Step 3: Build Mental Model
Extract and internalize from scan results:
From structure:
- Stack:
[language] | [framework] | [build-tool] - Entry points with types
- Module list with inferred domains
- Directory organization
From markers:
- AICODE-NOTE → Implementation context (why decisions were made)
- AICODE-TODO → Planned work (incomplete areas)
- AICODE-FIX → Known issues (from previous reviews)
From git:
- Current branch → feature context
- Changed files → review/focus scope
From reading key files:
- Import patterns → dependency relationships
- Shared modules → components with 3+ incoming connections
- Circular dependencies → architectural issues
Step 4: Confirm Readiness
Output minimal confirmation:
✅ Code context loaded: [project-name]
Stack: [language] | [framework]
Modules: [count] ([list])
Markers: [N] NOTE, [N] TODO, [N] FIX
Ready for: review | documentation | agent-generation
Error Handling
- Empty project: Report "No source files found"
- No git repo: Continue without git section (is_repo: false)
- Permission denied: Report file, continue with available
Usage Notes
This skill prepares context for:
- Code review (scope, markers, dependencies)
- Documentation generation (structure, stack)
- Agent creation (domains, boundaries)
- Architecture queries
Context remains in memory for entire conversation.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon

