← Back to list

rag-pipeline-builder
by patricio0312rev
Comprehensive library of +100 production-ready development skills covering every aspect of modern software engineering. From project setup to production deployment, from security hardening to performance optimization.
⭐ 6🍴 0📅 Jan 19, 2026
SKILL.md
name: rag-pipeline-builder description: Designs retrieval-augmented generation pipelines for document-based AI assistants. Includes chunking strategies, metadata schemas, retrieval algorithms, reranking, and evaluation plans. Use when building "RAG systems", "document search", "semantic search", or "knowledge bases".
RAG Pipeline Builder
Design end-to-end RAG pipelines for accurate document retrieval and generation.
Pipeline Architecture
Documents → Chunking → Embedding → Vector Store → Retrieval → Reranking → Generation
Chunking Strategy
# Semantic chunking (recommended)
from langchain.text_splitter import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, # Characters per chunk
chunk_overlap=200, # Overlap between chunks
separators=["\n\n", "\n", ". ", " ", ""],
length_function=len,
)
chunks = splitter.split_text(document.text)
# Add metadata to each chunk
for i, chunk in enumerate(chunks):
chunks[i] = {
"text": chunk,
"metadata": {
"source": document.filename,
"page": calculate_page(i),
"chunk_id": f"{document.id}_chunk_{i}",
}
}
Metadata Schema
interface ChunkMetadata {
// Source information
document_id: string;
source: string;
url?: string;
// Location
page?: number;
section?: string;
chunk_index: number;
// Content classification
content_type: "text" | "code" | "table" | "list";
language?: string;
// Timestamps
created_at: Date;
updated_at: Date;
// Retrieval optimization
keywords: string[];
summary?: string;
importance_score?: number;
}
Vector Store Setup
# Pinecone example
import pinecone
from langchain.vectorstores import Pinecone
from langchain.embeddings import OpenAIEmbeddings
pinecone.init(api_key="...", environment="...")
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vectorstore = Pinecone.from_documents(
documents=chunks,
embedding=embeddings,
index_name="knowledge-base",
namespace="production",
)
Retrieval Strategies
# Hybrid search (dense + sparse)
def hybrid_retrieval(query: str, k: int = 5):
# Dense retrieval (semantic)
dense_results = vectorstore.similarity_search(query, k=k*2)
# Sparse retrieval (keyword - BM25)
sparse_results = bm25_search(query, k=k*2)
# Combine and rerank
combined = reciprocal_rank_fusion(dense_results, sparse_results)
return combined[:k]
# Metadata filtering
results = vectorstore.similarity_search(
query,
k=5,
filter={
"content_type": "code",
"language": "python",
}
)
Reranking
from sentence_transformers import CrossEncoder
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
def rerank_results(query: str, results: List[Document], top_k: int = 3):
# Score each result against query
pairs = [(query, doc.page_content) for doc in results]
scores = reranker.predict(pairs)
# Sort by score
scored_results = list(zip(results, scores))
scored_results.sort(key=lambda x: x[1], reverse=True)
return [doc for doc, score in scored_results[:top_k]]
Query Enhancement
# Query expansion
def expand_query(query: str) -> str:
expansion_prompt = f"""
Generate 3 alternative phrasings of this query:
"{query}"
Return as JSON array of strings.
"""
alternatives = llm(expansion_prompt)
return [query] + alternatives
# Multi-query retrieval
def multi_query_retrieval(query: str, k: int = 5):
queries = expand_query(query)
all_results = []
for q in queries:
results = vectorstore.similarity_search(q, k=k)
all_results.extend(results)
# Deduplicate and rerank
unique_results = deduplicate(all_results)
return rerank_results(query, unique_results, k)
Evaluation Plan
# Define golden dataset
golden_dataset = [
{
"query": "How do I authenticate users?",
"expected_docs": ["auth_guide.md", "user_management.md"],
"relevant_chunks": ["chunk_123", "chunk_456"],
},
]
# Metrics
def evaluate_retrieval(dataset):
results = {
"precision": [],
"recall": [],
"mrr": [], # Mean Reciprocal Rank
"ndcg": [] # Normalized Discounted Cumulative Gain
}
for item in dataset:
retrieved = retrieval_fn(item["query"])
retrieved_ids = [doc.metadata["chunk_id"] for doc in retrieved]
# Calculate metrics
relevant = set(item["relevant_chunks"])
retrieved_set = set(retrieved_ids)
precision = len(relevant & retrieved_set) / len(retrieved_set)
recall = len(relevant & retrieved_set) / len(relevant)
results["precision"].append(precision)
results["recall"].append(recall)
return {k: sum(v)/len(v) for k, v in results.items()}
Context Window Management
def fit_context_window(chunks: List[Document], max_tokens: int = 4000):
"""Select chunks that fit in context window"""
total_tokens = 0
selected_chunks = []
for chunk in chunks:
chunk_tokens = count_tokens(chunk.page_content)
if total_tokens + chunk_tokens <= max_tokens:
selected_chunks.append(chunk)
total_tokens += chunk_tokens
else:
break
return selected_chunks
Best Practices
- Chunk size: 500-1000 chars for general text
- Overlap: 10-20% overlap between chunks
- Metadata: Rich metadata for filtering
- Hybrid search: Combine semantic + keyword
- Reranking: Cross-encoder for final ranking
- Evaluation: Golden dataset with metrics
- Context management: Don't exceed model limits
Output Checklist
- Chunking strategy defined
- Metadata schema documented
- Vector store configured
- Retrieval algorithm implemented
- Reranking pipeline added
- Query enhancement (optional)
- Context window management
- Evaluation dataset created
- Metrics implementation
- Performance baseline established
Score
Total Score
70/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
✓説明文
100文字以上の説明がある
+10
○人気
GitHub Stars 100以上
0/15
✓最近の活動
1ヶ月以内に更新
+10
○フォーク
10回以上フォークされている
0/5
✓Issue管理
オープンIssueが50未満
+5
○言語
プログラミング言語が設定されている
0/5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon


