
claude-sdk-integration-patterns
by manutej
Professional Claude Code marketplace with 140 development tools: 67 skills, 28 commands, 30 agents, 15 workflows
SKILL.md
name: claude-sdk-integration-patterns description: Expert integration patterns for Claude API and TypeScript SDK covering Messages API, streaming responses, tool use, error handling, token optimization, and production-ready implementations for building AI-powered applications
Claude SDK Integration Patterns
Production-ready patterns for integrating Claude API and TypeScript SDK into applications. Master streaming responses, tool execution, error handling, and optimization strategies for AI-powered features.
When to Use This Skill
Use this skill when you need to:
- Integrate Claude API into Node.js/TypeScript applications
- Implement streaming conversations with real-time responses
- Build applications with Claude tool use (function calling)
- Handle API errors gracefully with retry logic
- Optimize token usage and manage costs
- Deploy Claude-powered features to production
- Build multi-turn conversations with context management
- Implement message batching for high-volume processing
Core Concepts
Messages API Fundamentals
The Claude Messages API is the primary interface for conversational AI:
Key Components:
- Model Selection: Choose appropriate model (Opus, Sonnet, Haiku)
- Messages Array: Conversation history with user/assistant roles
- Max Tokens: Control response length
- System Prompts: Guide model behavior
- Streaming: Real-time response generation
SDK Architecture
The TypeScript SDK provides:
- Type-safe API client
- Streaming helpers for real-time responses
- Tool execution framework
- Error handling utilities
- Message batch processing
- Event-driven architecture
Installation and Setup
# Install the SDK
npm install @anthropic-ai/sdk
# Or with yarn
yarn add @anthropic-ai/sdk
import Anthropic from '@anthropic-ai/sdk';
// Initialize client
const anthropic = new Anthropic({
apiKey: process.env.ANTHROPIC_API_KEY,
});
Messages API Patterns
Pattern 1: Basic Message Creation
const message = await anthropic.messages.create({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [
{ role: 'user', content: 'Hello, Claude!' }
],
});
console.log(message.content);
When to use:
- Simple question-answer interactions
- One-off API calls
- Synchronous workflows
Pattern 2: Multi-Turn Conversations
const messages = [
{ role: 'user', content: 'What is TypeScript?' },
{ role: 'assistant', content: 'TypeScript is a typed superset of JavaScript...' },
{ role: 'user', content: 'Give me an example' },
];
const response = await anthropic.messages.create({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages,
});
When to use:
- Chatbots and conversational UIs
- Multi-step workflows
- Context-dependent interactions
Pattern 3: System Prompts
const response = await anthropic.messages.create({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
system: 'You are a helpful Python programming assistant. Provide concise, tested code examples.',
messages: [
{ role: 'user', content: 'How do I read a CSV file?' }
],
});
When to use:
- Specialized assistants
- Role-playing scenarios
- Consistent behavior across conversations
Streaming Patterns
Pattern 4: Basic Streaming
const stream = await anthropic.messages.create({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: 'Write a story' }],
stream: true,
});
for await (const event of stream) {
if (event.type === 'content_block_delta' && event.delta.type === 'text_delta') {
process.stdout.write(event.delta.text);
}
}
When to use:
- Real-time user interfaces
- Long-form content generation
- Interactive experiences
Pattern 5: Streaming with Event Handlers
const stream = anthropic.messages.stream({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: 'Explain quantum computing' }],
})
.on('text', (text) => {
console.log(text);
})
.on('message', (message) => {
console.log('Complete message:', message);
})
.on('error', (error) => {
console.error('Stream error:', error);
});
const finalMessage = await stream.finalMessage();
When to use:
- Real-time UIs (chatbots, live editors)
- Progress indicators
- Partial result processing
Pattern 6: Streaming with Abort Control
const stream = anthropic.messages.stream({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: 'Long task...' }],
});
// Abort after timeout
setTimeout(() => stream.abort(), 5000);
try {
await stream.done();
} catch (error) {
if (error instanceof Anthropic.APIUserAbortError) {
console.log('Stream aborted by user');
}
}
When to use:
- User-cancellable operations
- Timeout handling
- Resource management
Tool Use Patterns
Pattern 7: Tool Definition with Zod
import { betaZodTool } from '@anthropic-ai/sdk/helpers/zod';
import { z } from 'zod';
const weatherTool = betaZodTool({
name: 'get_weather',
inputSchema: z.object({
location: z.string(),
unit: z.enum(['celsius', 'fahrenheit']).default('fahrenheit'),
}),
description: 'Get current weather for a location',
run: async (input) => {
// Call weather API
return `Weather in ${input.location}: 72°F, sunny`;
},
});
When to use:
- Type-safe tool definitions
- Input validation
- Clear tool contracts
Pattern 8: Tool Runner for Automatic Execution
const finalMessage = await anthropic.beta.messages.toolRunner({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1000,
messages: [
{ role: 'user', content: 'What\'s the weather in San Francisco?' }
],
tools: [weatherTool],
});
console.log(finalMessage.content);
When to use:
- Automated tool execution
- AI agents with function calling
- Complex multi-step workflows
Pattern 9: Streaming Tool Execution
const runner = anthropic.beta.messages.toolRunner({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1000,
messages: [{ role: 'user', content: 'Check weather and calculate travel time' }],
tools: [weatherTool, travelTimeTool],
stream: true,
});
for await (const messageStream of runner) {
for await (const event of messageStream) {
console.log('Event:', event);
}
console.log('Message:', await messageStream.finalMessage());
}
When to use:
- Real-time tool execution feedback
- Multi-tool workflows
- Interactive AI agents
Error Handling Patterns
Pattern 10: Comprehensive Error Handling
async function createMessage(prompt: string) {
try {
const message = await anthropic.messages.create({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: prompt }],
});
return message;
} catch (error) {
if (error instanceof Anthropic.APIError) {
console.error('API Error:', {
status: error.status,
name: error.name,
message: error.message,
headers: error.headers,
});
// Handle specific errors
if (error.status === 429) {
// Rate limit - implement backoff
console.log('Rate limited, waiting...');
await new Promise(resolve => setTimeout(resolve, 60000));
return createMessage(prompt); // Retry
} else if (error.status === 401) {
throw new Error('Invalid API key');
} else if (error.status === 400) {
throw new Error(`Bad request: ${error.message}`);
}
}
throw error;
}
}
When to use:
- Production applications
- Robust error recovery
- User-facing applications
Pattern 11: Exponential Backoff Retry
async function createWithRetry(
params: Anthropic.MessageCreateParams,
maxRetries = 3,
baseDelay = 1000
): Promise<Anthropic.Message> {
for (let attempt = 0; attempt < maxRetries; attempt++) {
try {
return await anthropic.messages.create(params);
} catch (error) {
if (error instanceof Anthropic.APIError && error.status === 429) {
// Rate limit - exponential backoff
const delay = baseDelay * Math.pow(2, attempt);
console.log(`Retry attempt ${attempt + 1} after ${delay}ms`);
await new Promise(resolve => setTimeout(resolve, delay));
} else {
throw error;
}
}
}
throw new Error('Max retries exceeded');
}
When to use:
- High-volume applications
- Rate limit handling
- Network reliability
Token Optimization Patterns
Pattern 12: Token Counting
import { encode } from 'gpt-tokenizer';
function estimateTokens(text: string): number {
// Approximate token count (Claude uses similar tokenization to GPT)
return encode(text).length;
}
function optimizePrompt(userMessage: string, maxTokens: number = 1024): string {
const tokens = estimateTokens(userMessage);
if (tokens > maxTokens) {
// Truncate or summarize
return userMessage.slice(0, maxTokens * 4); // Rough char estimate
}
return userMessage;
}
When to use:
- Cost optimization
- Token budget management
- Large input handling
Pattern 13: Context Window Management
interface ConversationMessage {
role: 'user' | 'assistant';
content: string;
tokens?: number;
}
class ConversationManager {
private messages: ConversationMessage[] = [];
private maxContextTokens = 100000;
addMessage(role: 'user' | 'assistant', content: string) {
const tokens = estimateTokens(content);
this.messages.push({ role, content, tokens });
this.pruneIfNeeded();
}
private pruneIfNeeded() {
const totalTokens = this.messages.reduce((sum, msg) => sum + (msg.tokens || 0), 0);
if (totalTokens > this.maxContextTokens) {
// Remove oldest messages (keep system prompt if present)
this.messages = this.messages.slice(-10); // Keep last 10 messages
}
}
getMessages() {
return this.messages.map(({ role, content }) => ({ role, content }));
}
}
When to use:
- Long conversations
- Context management
- Cost control
Message Batching Patterns
Pattern 14: Batch Processing
const batchResult = await anthropic.messages.batches.create({
requests: [
{
custom_id: 'request-1',
params: {
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: 'Summarize this article...' }],
},
},
{
custom_id: 'request-2',
params: {
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: 'Translate this text...' }],
},
},
],
});
// Poll for results
const batch = await anthropic.messages.batches.retrieve(batchResult.id);
When to use:
- Bulk processing
- Offline workflows
- Cost optimization (lower batch pricing)
Production Patterns
Pattern 15: Request Timeout Configuration
const anthropic = new Anthropic({
apiKey: process.env.ANTHROPIC_API_KEY,
timeout: 60000, // 60 seconds
maxRetries: 3,
});
When to use:
- Production deployments
- Network reliability
- Resource management
Pattern 16: Custom Headers and Metadata
const message = await anthropic.messages.create(
{
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: 'Hello' }],
},
{
headers: {
'anthropic-beta': 'max-tokens-3-5-sonnet-2024-07-15',
},
}
);
When to use:
- Beta features
- Custom tracking
- A/B testing
Best Practices
API Key Management
-
Never hardcode API keys
// ❌ Bad const anthropic = new Anthropic({ apiKey: 'sk-ant-...' }); // ✅ Good const anthropic = new Anthropic({ apiKey: process.env.ANTHROPIC_API_KEY }); -
Use environment variables
# .env file ANTHROPIC_API_KEY=sk-ant-your-key-here
Model Selection
-
Choose appropriate model for task:
- Opus: Most capable, complex reasoning
- Sonnet: Balanced performance/speed
- Haiku: Fastest, simple tasks
-
Use latest model versions:
model: 'claude-sonnet-4-5-20250929' // Latest
Streaming Considerations
-
Always use streaming for:
- User-facing applications
- Long-form content (>500 tokens)
- Real-time interactions
-
Avoid streaming for:
- Backend batch processing
- Deterministic outputs needed upfront
- Simple API integrations
Error Handling
- Always catch API errors
- Implement retry logic for transient failures
- Log errors for debugging
- Provide user-friendly error messages
Token Management
- Estimate tokens before API calls
- Set appropriate max_tokens
- Monitor token usage
- Implement context pruning for long conversations
Troubleshooting
Issue: Rate Limit Errors (429)
Solution:
- Implement exponential backoff
- Use message batching for bulk operations
- Upgrade to higher rate limit tier
Issue: Timeout Errors
Solution:
- Use streaming for long responses
- Increase timeout configuration
- Reduce max_tokens
Issue: Invalid API Key (401)
Solution:
- Verify environment variable is set
- Check API key format (starts with
sk-ant-) - Ensure key hasn't been rotated
Issue: Context Length Exceeded
Solution:
- Implement conversation pruning
- Summarize older messages
- Use appropriate context window limits
Resources
Skill Version: 1.0.0 Last Updated: October 2025 Compatibility: @anthropic-ai/sdk 0.30.0+ Research Source: Context7 - Anthropic TypeScript SDK (106 code snippets, Trust Score 8.8)
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon


