Back to list
lavinigam-gcp

retail-agent-learner

by lavinigam-gcp

Design patterns and production-ready architectures for building multi-agent AI systems with Google ADK.

3🍴 1📅 Jan 23, 2026

SKILL.md


name: retail-agent-learner description: Learn ADK concepts and understand the retail agent pipeline. Use when asking how the agent works, what ADK is, wanting to understand the architecture, state flow, or individual agent purposes.

Retail Agent Learner

Pipeline Overview

This is an 8-agent pipeline for retail site selection analysis:

User Query
    ↓
IntakeAgent ────────────→ Extract location + business type
    ↓
MarketResearchAgent ────→ Google Search for demographics
    ↓
CompetitorMappingAgent ─→ Google Maps Places API
    ↓
GapAnalysisAgent ───────→ Python code execution (pandas)
    ↓
StrategyAdvisorAgent ───→ Extended thinking synthesis
    ↓
ParallelAgent ──────────→ Concurrent artifact generation
    ├── ReportGenerator ─→ HTML report
    ├── InfographicAgent → Image generation
    └── AudioOverview ───→ TTS podcast audio

What Each Agent Does

AgentPurposeKey Tool/Feature
IntakeAgentParse user requestAgentTool pattern
MarketResearchAgentFind market datagoogle_search built-in
CompetitorMappingAgentMap competitorsGoogle Maps API
GapAnalysisAgentCalculate viabilityCode execution (pandas)
StrategyAdvisorAgentSynthesize recommendationsExtended thinking
ReportGeneratorCreate HTML reportArtifact generation
InfographicAgentGenerate visualImage generation
AudioOverviewCreate podcast audioTTS multi-speaker

Key ADK Concepts

Agents

  • LlmAgent: Single LLM call with tools and instructions
  • SequentialAgent: Runs sub-agents one after another
  • ParallelAgent: Runs sub-agents concurrently

State Flow

Data passes between agents via session state:

IntakeAgent → state["target_location"], state["business_type"]
MarketResearchAgent → state["market_research_findings"]
CompetitorMappingAgent → state["competitor_analysis"]
GapAnalysisAgent → state["gap_analysis"]
StrategyAdvisorAgent → state["strategic_report"]

Tools

Functions that agents can call to perform actions. Access state via ToolContext.

Callbacks

Lifecycle hooks: before_agent_callback and after_agent_callback.

Learning Path

Start with the 9-part tutorial series:

  1. Part 1: Setup + First Agent
  2. Part 2: IntakeAgent
  3. Part 3: MarketResearchAgent
  4. Part 4: CompetitorMappingAgent
  5. Part 5: GapAnalysisAgent (code execution)
  6. Part 6: StrategyAdvisorAgent (extended thinking)
  7. Part 7: ArtifactGeneration (parallel outputs)
  8. Part 8: Testing
  9. Part 9: Production Deployment

[See references/architecture.md for detailed data flow] [See references/adk-concepts.md for ADK deep dive]

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon