Back to list
jeremylongshore

vastai-observability

by jeremylongshore

Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.

1,042🍴 135📅 Jan 23, 2026

SKILL.md


name: vastai-observability description: | Set up comprehensive observability for Vast.ai integrations with metrics, traces, and alerts. Use when implementing monitoring for Vast.ai operations, setting up dashboards, or configuring alerting for Vast.ai integration health. Trigger with phrases like "vastai monitoring", "vastai metrics", "vastai observability", "monitor vastai", "vastai alerts", "vastai tracing". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Vast.ai Observability

Overview

Set up comprehensive observability for Vast.ai integrations.

Prerequisites

  • Prometheus or compatible metrics backend
  • OpenTelemetry SDK installed
  • Grafana or similar dashboarding tool
  • AlertManager configured

Metrics Collection

Key Metrics

MetricTypeDescription
vastai_requests_totalCounterTotal API requests
vastai_request_duration_secondsHistogramRequest latency
vastai_errors_totalCounterError count by type
vastai_rate_limit_remainingGaugeRate limit headroom

Prometheus Metrics

import { Registry, Counter, Histogram, Gauge } from 'prom-client';

const registry = new Registry();

const requestCounter = new Counter({
  name: 'vastai_requests_total',
  help: 'Total Vast.ai API requests',
  labelNames: ['method', 'status'],
  registers: [registry],
});

const requestDuration = new Histogram({
  name: 'vastai_request_duration_seconds',
  help: 'Vast.ai request duration',
  labelNames: ['method'],
  buckets: [0.05, 0.1, 0.25, 0.5, 1, 2.5, 5],
  registers: [registry],
});

const errorCounter = new Counter({
  name: 'vastai_errors_total',
  help: 'Vast.ai errors by type',
  labelNames: ['error_type'],
  registers: [registry],
});

Instrumented Client

async function instrumentedRequest<T>(
  method: string,
  operation: () => Promise<T>
): Promise<T> {
  const timer = requestDuration.startTimer({ method });

  try {
    const result = await operation();
    requestCounter.inc({ method, status: 'success' });
    return result;
  } catch (error: any) {
    requestCounter.inc({ method, status: 'error' });
    errorCounter.inc({ error_type: error.code || 'unknown' });
    throw error;
  } finally {
    timer();
  }
}

Distributed Tracing

OpenTelemetry Setup

import { trace, SpanStatusCode } from '@opentelemetry/api';

const tracer = trace.getTracer('vastai-client');

async function tracedVast.aiCall<T>(
  operationName: string,
  operation: () => Promise<T>
): Promise<T> {
  return tracer.startActiveSpan(`vastai.${operationName}`, async (span) => {
    try {
      const result = await operation();
      span.setStatus({ code: SpanStatusCode.OK });
      return result;
    } catch (error: any) {
      span.setStatus({ code: SpanStatusCode.ERROR, message: error.message });
      span.recordException(error);
      throw error;
    } finally {
      span.end();
    }
  });
}

Logging Strategy

Structured Logging

import pino from 'pino';

const logger = pino({
  name: 'vastai',
  level: process.env.LOG_LEVEL || 'info',
});

function logVast.aiOperation(
  operation: string,
  data: Record<string, any>,
  duration: number
) {
  logger.info({
    service: 'vastai',
    operation,
    duration_ms: duration,
    ...data,
  });
}

Alert Configuration

Prometheus AlertManager Rules

# vastai_alerts.yaml
groups:
  - name: vastai_alerts
    rules:
      - alert: Vast.aiHighErrorRate
        expr: |
          rate(vastai_errors_total[5m]) /
          rate(vastai_requests_total[5m]) > 0.05
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "Vast.ai error rate > 5%"

      - alert: Vast.aiHighLatency
        expr: |
          histogram_quantile(0.95,
            rate(vastai_request_duration_seconds_bucket[5m])
          ) > 2
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "Vast.ai P95 latency > 2s"

      - alert: Vast.aiDown
        expr: up{job="vastai"} == 0
        for: 1m
        labels:
          severity: critical
        annotations:
          summary: "Vast.ai integration is down"

Dashboard

Grafana Panel Queries

{
  "panels": [
    {
      "title": "Vast.ai Request Rate",
      "targets": [{
        "expr": "rate(vastai_requests_total[5m])"
      }]
    },
    {
      "title": "Vast.ai Latency P50/P95/P99",
      "targets": [{
        "expr": "histogram_quantile(0.5, rate(vastai_request_duration_seconds_bucket[5m]))"
      }]
    }
  ]
}

Instructions

Step 1: Set Up Metrics Collection

Implement Prometheus counters, histograms, and gauges for key operations.

Step 2: Add Distributed Tracing

Integrate OpenTelemetry for end-to-end request tracing.

Step 3: Configure Structured Logging

Set up JSON logging with consistent field names.

Step 4: Create Alert Rules

Define Prometheus alerting rules for error rates and latency.

Output

  • Metrics collection enabled
  • Distributed tracing configured
  • Structured logging implemented
  • Alert rules deployed

Error Handling

IssueCauseSolution
Missing metricsNo instrumentationWrap client calls
Trace gapsMissing propagationCheck context headers
Alert stormsWrong thresholdsTune alert rules
High cardinalityToo many labelsReduce label values

Examples

Quick Metrics Endpoint

app.get('/metrics', async (req, res) => {
  res.set('Content-Type', registry.contentType);
  res.send(await registry.metrics());
});

Resources

Next Steps

For incident response, see vastai-incident-runbook.

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon