← Back to list

replit-observability
by jeremylongshore
Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.
⭐ 1,042🍴 135📅 Jan 23, 2026
SKILL.md
name: replit-observability description: | Set up comprehensive observability for Replit integrations with metrics, traces, and alerts. Use when implementing monitoring for Replit operations, setting up dashboards, or configuring alerting for Replit integration health. Trigger with phrases like "replit monitoring", "replit metrics", "replit observability", "monitor replit", "replit alerts", "replit tracing". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Replit Observability
Overview
Set up comprehensive observability for Replit integrations.
Prerequisites
- Prometheus or compatible metrics backend
- OpenTelemetry SDK installed
- Grafana or similar dashboarding tool
- AlertManager configured
Metrics Collection
Key Metrics
| Metric | Type | Description |
|---|---|---|
replit_requests_total | Counter | Total API requests |
replit_request_duration_seconds | Histogram | Request latency |
replit_errors_total | Counter | Error count by type |
replit_rate_limit_remaining | Gauge | Rate limit headroom |
Prometheus Metrics
import { Registry, Counter, Histogram, Gauge } from 'prom-client';
const registry = new Registry();
const requestCounter = new Counter({
name: 'replit_requests_total',
help: 'Total Replit API requests',
labelNames: ['method', 'status'],
registers: [registry],
});
const requestDuration = new Histogram({
name: 'replit_request_duration_seconds',
help: 'Replit request duration',
labelNames: ['method'],
buckets: [0.05, 0.1, 0.25, 0.5, 1, 2.5, 5],
registers: [registry],
});
const errorCounter = new Counter({
name: 'replit_errors_total',
help: 'Replit errors by type',
labelNames: ['error_type'],
registers: [registry],
});
Instrumented Client
async function instrumentedRequest<T>(
method: string,
operation: () => Promise<T>
): Promise<T> {
const timer = requestDuration.startTimer({ method });
try {
const result = await operation();
requestCounter.inc({ method, status: 'success' });
return result;
} catch (error: any) {
requestCounter.inc({ method, status: 'error' });
errorCounter.inc({ error_type: error.code || 'unknown' });
throw error;
} finally {
timer();
}
}
Distributed Tracing
OpenTelemetry Setup
import { trace, SpanStatusCode } from '@opentelemetry/api';
const tracer = trace.getTracer('replit-client');
async function tracedReplitCall<T>(
operationName: string,
operation: () => Promise<T>
): Promise<T> {
return tracer.startActiveSpan(`replit.${operationName}`, async (span) => {
try {
const result = await operation();
span.setStatus({ code: SpanStatusCode.OK });
return result;
} catch (error: any) {
span.setStatus({ code: SpanStatusCode.ERROR, message: error.message });
span.recordException(error);
throw error;
} finally {
span.end();
}
});
}
Logging Strategy
Structured Logging
import pino from 'pino';
const logger = pino({
name: 'replit',
level: process.env.LOG_LEVEL || 'info',
});
function logReplitOperation(
operation: string,
data: Record<string, any>,
duration: number
) {
logger.info({
service: 'replit',
operation,
duration_ms: duration,
...data,
});
}
Alert Configuration
Prometheus AlertManager Rules
# replit_alerts.yaml
groups:
- name: replit_alerts
rules:
- alert: ReplitHighErrorRate
expr: |
rate(replit_errors_total[5m]) /
rate(replit_requests_total[5m]) > 0.05
for: 5m
labels:
severity: warning
annotations:
summary: "Replit error rate > 5%"
- alert: ReplitHighLatency
expr: |
histogram_quantile(0.95,
rate(replit_request_duration_seconds_bucket[5m])
) > 2
for: 5m
labels:
severity: warning
annotations:
summary: "Replit P95 latency > 2s"
- alert: ReplitDown
expr: up{job="replit"} == 0
for: 1m
labels:
severity: critical
annotations:
summary: "Replit integration is down"
Dashboard
Grafana Panel Queries
{
"panels": [
{
"title": "Replit Request Rate",
"targets": [{
"expr": "rate(replit_requests_total[5m])"
}]
},
{
"title": "Replit Latency P50/P95/P99",
"targets": [{
"expr": "histogram_quantile(0.5, rate(replit_request_duration_seconds_bucket[5m]))"
}]
}
]
}
Instructions
Step 1: Set Up Metrics Collection
Implement Prometheus counters, histograms, and gauges for key operations.
Step 2: Add Distributed Tracing
Integrate OpenTelemetry for end-to-end request tracing.
Step 3: Configure Structured Logging
Set up JSON logging with consistent field names.
Step 4: Create Alert Rules
Define Prometheus alerting rules for error rates and latency.
Output
- Metrics collection enabled
- Distributed tracing configured
- Structured logging implemented
- Alert rules deployed
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| Missing metrics | No instrumentation | Wrap client calls |
| Trace gaps | Missing propagation | Check context headers |
| Alert storms | Wrong thresholds | Tune alert rules |
| High cardinality | Too many labels | Reduce label values |
Examples
Quick Metrics Endpoint
app.get('/metrics', async (req, res) => {
res.set('Content-Type', registry.contentType);
res.send(await registry.metrics());
});
Resources
Next Steps
For incident response, see replit-incident-runbook.
Score
Total Score
85/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
○説明文
100文字以上の説明がある
0/10
✓人気
GitHub Stars 1000以上
+15
✓最近の活動
1ヶ月以内に更新
+10
✓フォーク
10回以上フォークされている
+5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon

