Back to list
jeremylongshore

perplexity-performance-tuning

by jeremylongshore

Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.

1,042🍴 135📅 Jan 23, 2026

SKILL.md


name: perplexity-performance-tuning description: | Optimize Perplexity API performance with caching, batching, and connection pooling. Use when experiencing slow API responses, implementing caching strategies, or optimizing request throughput for Perplexity integrations. Trigger with phrases like "perplexity performance", "optimize perplexity", "perplexity latency", "perplexity caching", "perplexity slow", "perplexity batch". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Perplexity Performance Tuning

Overview

Optimize Perplexity API performance with caching, batching, and connection pooling.

Prerequisites

  • Perplexity SDK installed
  • Understanding of async patterns
  • Redis or in-memory cache available (optional)
  • Performance monitoring in place

Latency Benchmarks

OperationP50P95P99
Read50ms150ms300ms
Write100ms250ms500ms
List75ms200ms400ms

Caching Strategy

Response Caching

import { LRUCache } from 'lru-cache';

const cache = new LRUCache<string, any>({
  max: 1000,
  ttl: 60000, // 1 minute
  updateAgeOnGet: true,
});

async function cachedPerplexityRequest<T>(
  key: string,
  fetcher: () => Promise<T>,
  ttl?: number
): Promise<T> {
  const cached = cache.get(key);
  if (cached) return cached as T;

  const result = await fetcher();
  cache.set(key, result, { ttl });
  return result;
}

Redis Caching (Distributed)

import Redis from 'ioredis';

const redis = new Redis(process.env.REDIS_URL);

async function cachedWithRedis<T>(
  key: string,
  fetcher: () => Promise<T>,
  ttlSeconds = 60
): Promise<T> {
  const cached = await redis.get(key);
  if (cached) return JSON.parse(cached);

  const result = await fetcher();
  await redis.setex(key, ttlSeconds, JSON.stringify(result));
  return result;
}

Request Batching

import DataLoader from 'dataloader';

const perplexityLoader = new DataLoader<string, any>(
  async (ids) => {
    // Batch fetch from Perplexity
    const results = await perplexityClient.batchGet(ids);
    return ids.map(id => results.find(r => r.id === id) || null);
  },
  {
    maxBatchSize: 100,
    batchScheduleFn: callback => setTimeout(callback, 10),
  }
);

// Usage - automatically batched
const [item1, item2, item3] = await Promise.all([
  perplexityLoader.load('id-1'),
  perplexityLoader.load('id-2'),
  perplexityLoader.load('id-3'),
]);

Connection Optimization

import { Agent } from 'https';

// Keep-alive connection pooling
const agent = new Agent({
  keepAlive: true,
  maxSockets: 10,
  maxFreeSockets: 5,
  timeout: 30000,
});

const client = new PerplexityClient({
  apiKey: process.env.PERPLEXITY_API_KEY!,
  httpAgent: agent,
});

Pagination Optimization

async function* paginatedPerplexityList<T>(
  fetcher: (cursor?: string) => Promise<{ data: T[]; nextCursor?: string }>
): AsyncGenerator<T> {
  let cursor: string | undefined;

  do {
    const { data, nextCursor } = await fetcher(cursor);
    for (const item of data) {
      yield item;
    }
    cursor = nextCursor;
  } while (cursor);
}

// Usage
for await (const item of paginatedPerplexityList(cursor =>
  perplexityClient.list({ cursor, limit: 100 })
)) {
  await process(item);
}

Performance Monitoring

async function measuredPerplexityCall<T>(
  operation: string,
  fn: () => Promise<T>
): Promise<T> {
  const start = performance.now();
  try {
    const result = await fn();
    const duration = performance.now() - start;
    console.log({ operation, duration, status: 'success' });
    return result;
  } catch (error) {
    const duration = performance.now() - start;
    console.error({ operation, duration, status: 'error', error });
    throw error;
  }
}

Instructions

Step 1: Establish Baseline

Measure current latency for critical Perplexity operations.

Step 2: Implement Caching

Add response caching for frequently accessed data.

Step 3: Enable Batching

Use DataLoader or similar for automatic request batching.

Step 4: Optimize Connections

Configure connection pooling with keep-alive.

Output

  • Reduced API latency
  • Caching layer implemented
  • Request batching enabled
  • Connection pooling configured

Error Handling

IssueCauseSolution
Cache miss stormTTL expiredUse stale-while-revalidate
Batch timeoutToo many itemsReduce batch size
Connection exhaustedNo poolingConfigure max sockets
Memory pressureCache too largeSet max cache entries

Examples

Quick Performance Wrapper

const withPerformance = <T>(name: string, fn: () => Promise<T>) =>
  measuredPerplexityCall(name, () =>
    cachedPerplexityRequest(`cache:${name}`, fn)
  );

Resources

Next Steps

For cost optimization, see perplexity-cost-tuning.

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon