Back to list
jeremylongshore

optimizing-defi-yields

by jeremylongshore

Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.

1,042🍴 135📅 Jan 23, 2026

SKILL.md


name: optimizing-defi-yields description: | Find and compare DeFi yield opportunities across protocols with APY calculations, risk assessment, and optimization recommendations. Use when searching for yield farming opportunities, comparing DeFi protocols, or analyzing APY/APR rates. Trigger with phrases like "find DeFi yields", "compare APY", "best yield farming", "optimize DeFi returns", "stablecoin yields", or "liquidity pool rates".

allowed-tools: Read, Write, Bash(crypto:yield-*) version: 2.0.0 author: Jeremy Longshore jeremy@intentsolutions.io license: MIT

Optimizing DeFi Yields

Overview

Find and compare DeFi yield opportunities across protocols. Aggregates data from DeFiLlama and other sources to provide APY/APR comparisons, risk assessments, and optimization recommendations for yield farming strategies.

Prerequisites

Before using this skill, ensure you have:

  • Python 3.8+ installed
  • Internet access for API queries
  • Understanding of DeFi concepts (APY, APR, TVL, impermanent loss)

Instructions

Step 1: Search for Yield Opportunities

Find top yields across all chains:

python {baseDir}/scripts/yield_optimizer.py --top 20

Filter by specific chain:

python {baseDir}/scripts/yield_optimizer.py --chain ethereum --top 10

Step 2: Filter by Criteria

Filter by minimum TVL (for safety):

python {baseDir}/scripts/yield_optimizer.py --min-tvl 10000000 --top 15

Filter by asset type:

python {baseDir}/scripts/yield_optimizer.py --asset USDC --chain ethereum

Filter by protocol:

python {baseDir}/scripts/yield_optimizer.py --protocol aave,compound,curve

Step 3: Apply Risk Filters

Show only audited protocols:

python {baseDir}/scripts/yield_optimizer.py --audited-only --min-tvl 1000000

Filter by risk level:

LevelFlagDescription
Low--risk lowBlue-chip, battle-tested protocols
Medium--risk mediumEstablished protocols, moderate risk
High--risk highNewer protocols, higher yields
python {baseDir}/scripts/yield_optimizer.py --risk low --min-apy 3

Step 4: Analyze Specific Opportunities

Get detailed breakdown for a pool:

python {baseDir}/scripts/yield_optimizer.py --pool "aave-v3-usdc-ethereum" --detailed

Compare specific protocols:

python {baseDir}/scripts/yield_optimizer.py --compare aave,compound,spark --asset USDC

Step 5: Export Results

Export to JSON for further analysis:

python {baseDir}/scripts/yield_optimizer.py --top 50 --format json --output yields.json

Export to CSV:

python {baseDir}/scripts/yield_optimizer.py --chain ethereum --format csv --output eth_yields.csv

Output

Yield Summary Table

==============================================================================
  DEFI YIELD OPTIMIZER                              2026-01-15 15:30 UTC
==============================================================================

  TOP YIELD OPPORTUNITIES
------------------------------------------------------------------------------
  Protocol       Pool          Chain      TVL        APY    Risk    Score
  Convex        cvxCRV        Ethereum   $450M    12.5%    Low     9.2
  Aave v3       USDC          Ethereum   $2.1B     4.2%    Low     9.8
  Curve         3pool         Ethereum   $890M     3.8%    Low     9.5
  Compound v3   USDC          Ethereum   $1.5B     3.2%    Low     9.6
  Yearn         yvUSDC        Ethereum   $120M     5.1%    Medium  7.8
------------------------------------------------------------------------------

  APY BREAKDOWN (Top Result)
------------------------------------------------------------------------------
  Base APY:     4.5%
  Reward APY:   8.0% (CRV + CVX)
  Total APY:    12.5%
  IL Risk:      None (single-sided)
==============================================================================

Risk Assessment

  RISK ANALYSIS: Convex cvxCRV
------------------------------------------------------------------------------
  Audit Status:    ✓ Audited (Trail of Bits, OpenZeppelin)
  Protocol Age:    3+ years
  TVL:             $450M (stable)
  TVL Trend:       +5% (30d)
  Risk Score:      9.2/10 (Low Risk)

  Risk Factors:
  • Smart contract dependency on Curve
  • CRV/CVX reward token volatility
  • Vote-lock mechanics
==============================================================================

Error Handling

See {baseDir}/references/errors.md for comprehensive error handling.

Common issues:

  • API timeout: Uses cached data with staleness warning
  • No pools found: Broaden search criteria
  • Invalid protocol: Check supported protocols list

Examples

See {baseDir}/references/examples.md for detailed usage examples.

Quick Examples

Find stablecoin yields:

python yield_optimizer.py --asset USDC,USDT,DAI --min-tvl 10000000

Low-risk opportunities:

python yield_optimizer.py --risk low --audited-only --min-apy 2

Multi-chain search:

python yield_optimizer.py --chain ethereum,arbitrum,polygon --top 20

Export top yields:

python yield_optimizer.py --top 100 --format json --output all_yields.json

Configuration

Settings in {baseDir}/config/settings.yaml:

  • Default chain: Primary chain to search
  • Cache TTL: How long to cache API responses
  • Risk weights: Customize risk scoring factors
  • Min TVL default: Default minimum TVL filter

Resources

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon