Back to list
jeremylongshore

lindy-sdk-patterns

by jeremylongshore

Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.

1,042🍴 135📅 Jan 23, 2026

SKILL.md


name: lindy-sdk-patterns description: | Lindy AI SDK best practices and common patterns. Use when learning SDK patterns, optimizing API usage, or implementing advanced agent features. Trigger with phrases like "lindy SDK patterns", "lindy best practices", "lindy API patterns", "lindy code patterns". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Lindy SDK Patterns

Overview

Essential SDK patterns and best practices for Lindy AI agent development.

Prerequisites

  • Completed lindy-install-auth setup
  • Basic understanding of async/await
  • Familiarity with TypeScript

Instructions

Pattern 1: Client Singleton

// lib/lindy.ts
import { Lindy } from '@lindy-ai/sdk';

let client: Lindy | null = null;

export function getLindyClient(): Lindy {
  if (!client) {
    client = new Lindy({
      apiKey: process.env.LINDY_API_KEY!,
      timeout: 30000,
    });
  }
  return client;
}

Pattern 2: Agent Factory

// agents/factory.ts
import { getLindyClient } from '../lib/lindy';

interface AgentConfig {
  name: string;
  instructions: string;
  tools?: string[];
}

export async function createAgent(config: AgentConfig) {
  const lindy = getLindyClient();

  const agent = await lindy.agents.create({
    name: config.name,
    instructions: config.instructions,
    tools: config.tools || [],
  });

  return agent;
}

Pattern 3: Retry with Backoff

async function runWithRetry<T>(
  fn: () => Promise<T>,
  maxRetries = 3
): Promise<T> {
  for (let i = 0; i < maxRetries; i++) {
    try {
      return await fn();
    } catch (error: any) {
      if (error.status === 429 && i < maxRetries - 1) {
        await new Promise(r => setTimeout(r, Math.pow(2, i) * 1000));
        continue;
      }
      throw error;
    }
  }
  throw new Error('Max retries exceeded');
}

Pattern 4: Streaming Responses

async function streamAgentResponse(agentId: string, input: string) {
  const lindy = getLindyClient();

  const stream = await lindy.agents.runStream(agentId, { input });

  for await (const chunk of stream) {
    process.stdout.write(chunk.delta);
  }
  console.log(); // newline
}

Output

  • Reusable client singleton pattern
  • Agent factory for consistent creation
  • Robust error handling with retries
  • Streaming support for real-time output

Error Handling

PatternUse CaseBenefit
SingletonConnection reuseReduced overhead
FactoryAgent creationConsistency
RetryRate limitsReliability
StreamingLong responsesBetter UX

Examples

Complete Agent Service

// services/agent-service.ts
import { getLindyClient } from '../lib/lindy';

export class AgentService {
  private lindy = getLindyClient();

  async createAndRun(name: string, instructions: string, input: string) {
    const agent = await this.lindy.agents.create({ name, instructions });
    const result = await this.lindy.agents.run(agent.id, { input });
    return { agent, result };
  }

  async listAgents() {
    return this.lindy.agents.list();
  }

  async deleteAgent(id: string) {
    return this.lindy.agents.delete(id);
  }
}

Resources

Next Steps

Proceed to lindy-core-workflow-a for agent creation workflows.

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon