Back to list
jeremylongshore

lindy-performance-tuning

by jeremylongshore

Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.

1,042🍴 135📅 Jan 23, 2026

SKILL.md


name: lindy-performance-tuning description: | Optimize Lindy AI agent performance and response times. Use when improving latency, optimizing throughput, or reducing response times. Trigger with phrases like "lindy performance", "lindy slow", "optimize lindy", "lindy latency". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Lindy Performance Tuning

Overview

Optimize Lindy AI agent performance for faster response times and higher throughput.

Prerequisites

  • Production Lindy integration
  • Baseline performance metrics
  • Access to monitoring tools

Instructions

Step 1: Measure Baseline Performance

import { Lindy } from '@lindy-ai/sdk';

interface PerformanceMetrics {
  avgLatency: number;
  p95Latency: number;
  p99Latency: number;
  throughput: number;
  errorRate: number;
}

async function measureBaseline(agentId: string, iterations = 100): Promise<PerformanceMetrics> {
  const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
  const latencies: number[] = [];
  let errors = 0;

  const start = Date.now();

  for (let i = 0; i < iterations; i++) {
    const runStart = Date.now();
    try {
      await lindy.agents.run(agentId, { input: 'Benchmark test' });
      latencies.push(Date.now() - runStart);
    } catch (e) {
      errors++;
    }
  }

  const totalTime = (Date.now() - start) / 1000;
  latencies.sort((a, b) => a - b);

  return {
    avgLatency: latencies.reduce((a, b) => a + b, 0) / latencies.length,
    p95Latency: latencies[Math.floor(latencies.length * 0.95)],
    p99Latency: latencies[Math.floor(latencies.length * 0.99)],
    throughput: iterations / totalTime,
    errorRate: errors / iterations,
  };
}

Step 2: Optimize Agent Instructions

// BEFORE: Verbose instructions (slow)
const slowAgent = {
  instructions: `
    You are a helpful assistant that should carefully consider
    each request and provide detailed, comprehensive responses.
    Think step by step about each query. Consider all possibilities.
    Provide examples and explanations for everything.
  `,
};

// AFTER: Concise instructions (fast)
const fastAgent = {
  instructions: `
    Be concise. Answer directly. Skip pleasantries.
    Format: [Answer] (1-2 sentences)
  `,
  config: {
    maxTokens: 100, // Limit response length
  },
};

Step 3: Enable Streaming

// Non-streaming (waits for full response)
const result = await lindy.agents.run(agentId, { input });
console.log(result.output); // Logs after full response

// Streaming (immediate partial responses)
const stream = await lindy.agents.runStream(agentId, { input });

for await (const chunk of stream) {
  process.stdout.write(chunk.delta); // Real-time output
}

Step 4: Implement Caching

import NodeCache from 'node-cache';

const cache = new NodeCache({ stdTTL: 300 }); // 5 minute TTL

async function runWithCache(agentId: string, input: string) {
  const cacheKey = `${agentId}:${crypto.createHash('md5').update(input).digest('hex')}`;

  // Check cache
  const cached = cache.get(cacheKey);
  if (cached) {
    return cached;
  }

  // Run agent
  const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
  const result = await lindy.agents.run(agentId, { input });

  // Cache result
  cache.set(cacheKey, result);

  return result;
}

Step 5: Optimize Concurrency

// Poor: Sequential execution
for (const input of inputs) {
  await lindy.agents.run(agentId, { input }); // Slow!
}

// Better: Parallel with controlled concurrency
import pLimit from 'p-limit';

const limit = pLimit(5); // Max 5 concurrent

const results = await Promise.all(
  inputs.map(input =>
    limit(() => lindy.agents.run(agentId, { input }))
  )
);

Performance Checklist

[ ] Baseline metrics captured
[ ] Instructions are concise
[ ] Max tokens configured appropriately
[ ] Streaming enabled for long responses
[ ] Caching implemented for repeated queries
[ ] Concurrency optimized
[ ] Connection pooling enabled
[ ] Timeout values tuned

Output

  • Baseline performance metrics
  • Optimized agent configuration
  • Caching implementation
  • Concurrency patterns

Error Handling

IssueCauseSolution
High latencyVerbose instructionsSimplify prompts
TimeoutsResponse too longAdd max tokens
ThrottlingToo concurrentLimit parallelism

Examples

Complete Performance Client

class PerformantLindyClient {
  private lindy: Lindy;
  private cache: NodeCache;
  private limiter: any;

  constructor() {
    this.lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
    this.cache = new NodeCache({ stdTTL: 300 });
    this.limiter = pLimit(5);
  }

  async run(agentId: string, input: string) {
    const cacheKey = `${agentId}:${input}`;
    const cached = this.cache.get(cacheKey);
    if (cached) return cached;

    const result = await this.limiter(() =>
      this.lindy.agents.run(agentId, { input })
    );

    this.cache.set(cacheKey, result);
    return result;
  }
}

Resources

Next Steps

Proceed to lindy-cost-tuning for cost optimization.

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon