Back to list
jeremylongshore

lindy-observability

by jeremylongshore

Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.

1,042🍴 135📅 Jan 23, 2026

SKILL.md


name: lindy-observability description: | Implement observability for Lindy AI integrations. Use when setting up monitoring, logging, tracing, or building dashboards for Lindy operations. Trigger with phrases like "lindy monitoring", "lindy observability", "lindy metrics", "lindy logging", "lindy tracing". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Lindy Observability

Overview

Implement comprehensive observability for Lindy AI integrations.

Prerequisites

  • Production Lindy integration
  • Observability stack (Datadog, New Relic, Prometheus, etc.)
  • Log aggregation system

Instructions

Step 1: Structured Logging

// lib/logger.ts
import pino from 'pino';

export const logger = pino({
  level: process.env.LOG_LEVEL || 'info',
  formatters: {
    level: (label) => ({ level: label }),
  },
  base: {
    service: 'lindy-integration',
    environment: process.env.NODE_ENV,
  },
});

// Lindy-specific logger
export function lindyLogger(operation: string) {
  return logger.child({ component: 'lindy', operation });
}

Step 2: Instrumented Client

// lib/instrumented-lindy.ts
import { Lindy } from '@lindy-ai/sdk';
import { lindyLogger } from './logger';
import { metrics } from './metrics';
import { tracer } from './tracer';

export class InstrumentedLindy {
  private lindy: Lindy;

  constructor() {
    this.lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
  }

  async runAgent(agentId: string, input: string) {
    const log = lindyLogger('runAgent');
    const span = tracer.startSpan('lindy.agent.run');

    const startTime = Date.now();

    try {
      span.setAttributes({
        'lindy.agent_id': agentId,
        'lindy.input_length': input.length,
      });

      log.info({ agentId, inputLength: input.length }, 'Starting agent run');

      const result = await this.lindy.agents.run(agentId, { input });

      const duration = Date.now() - startTime;

      // Record metrics
      metrics.histogram('lindy.agent.duration', duration, { agentId });
      metrics.counter('lindy.agent.success', 1, { agentId });

      // Log success
      log.info({
        agentId,
        duration,
        outputLength: result.output.length,
      }, 'Agent run completed');

      span.setAttributes({
        'lindy.duration_ms': duration,
        'lindy.output_length': result.output.length,
        'lindy.status': 'success',
      });

      return result;
    } catch (error: any) {
      const duration = Date.now() - startTime;

      // Record error metrics
      metrics.counter('lindy.agent.error', 1, {
        agentId,
        errorCode: error.code,
      });

      // Log error
      log.error({
        agentId,
        duration,
        error: error.message,
        errorCode: error.code,
      }, 'Agent run failed');

      span.setAttributes({
        'lindy.status': 'error',
        'lindy.error': error.message,
      });
      span.recordException(error);

      throw error;
    } finally {
      span.end();
    }
  }
}

Step 3: Metrics Collection

// lib/metrics.ts
import { Counter, Histogram, Registry } from 'prom-client';

const registry = new Registry();

export const metrics = {
  agentDuration: new Histogram({
    name: 'lindy_agent_duration_ms',
    help: 'Duration of Lindy agent runs in milliseconds',
    labelNames: ['agent_id', 'status'],
    buckets: [100, 500, 1000, 2000, 5000, 10000, 30000],
    registers: [registry],
  }),

  agentRuns: new Counter({
    name: 'lindy_agent_runs_total',
    help: 'Total number of Lindy agent runs',
    labelNames: ['agent_id', 'status'],
    registers: [registry],
  }),

  apiCalls: new Counter({
    name: 'lindy_api_calls_total',
    help: 'Total Lindy API calls',
    labelNames: ['endpoint', 'status'],
    registers: [registry],
  }),

  // Helper methods
  histogram(name: string, value: number, labels: Record<string, string>) {
    const metric = registry.getSingleMetric(name) as Histogram;
    metric?.observe(labels, value);
  },

  counter(name: string, value: number, labels: Record<string, string>) {
    const metric = registry.getSingleMetric(name) as Counter;
    metric?.inc(labels, value);
  },
};

// Metrics endpoint
export function getMetrics(): Promise<string> {
  return registry.metrics();
}

Step 4: Distributed Tracing

// lib/tracer.ts
import { trace, SpanStatusCode } from '@opentelemetry/api';
import { NodeTracerProvider } from '@opentelemetry/sdk-trace-node';
import { SimpleSpanProcessor } from '@opentelemetry/sdk-trace-base';
import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http';

const provider = new NodeTracerProvider();

provider.addSpanProcessor(
  new SimpleSpanProcessor(
    new OTLPTraceExporter({
      url: process.env.OTEL_EXPORTER_OTLP_ENDPOINT,
    })
  )
);

provider.register();

export const tracer = trace.getTracer('lindy-integration');

Step 5: Dashboard Configuration

# grafana/dashboards/lindy.json
{
  "title": "Lindy AI Monitoring",
  "panels": [
    {
      "title": "Agent Runs per Minute",
      "type": "graph",
      "targets": [
        {
          "expr": "rate(lindy_agent_runs_total[1m])",
          "legendFormat": "{{agent_id}}"
        }
      ]
    },
    {
      "title": "P95 Latency",
      "type": "stat",
      "targets": [
        {
          "expr": "histogram_quantile(0.95, rate(lindy_agent_duration_ms_bucket[5m]))"
        }
      ]
    },
    {
      "title": "Error Rate",
      "type": "graph",
      "targets": [
        {
          "expr": "rate(lindy_agent_runs_total{status='error'}[5m]) / rate(lindy_agent_runs_total[5m])"
        }
      ]
    }
  ]
}

Output

  • Structured logging
  • Prometheus metrics
  • Distributed tracing
  • Grafana dashboards
  • Alerting rules

Error Handling

IssueCauseSolution
Missing tracesOTEL not configuredSet OTEL endpoint
Metrics not visibleWrong labelsCheck label names
Logs not searchableMissing contextAdd structured fields

Examples

Alert Configuration

# alerts/lindy.yml
groups:
  - name: lindy
    rules:
      - alert: LindyHighErrorRate
        expr: rate(lindy_agent_runs_total{status="error"}[5m]) > 0.1
        for: 5m
        labels:
          severity: critical
        annotations:
          summary: "High Lindy error rate"

      - alert: LindyHighLatency
        expr: histogram_quantile(0.95, rate(lindy_agent_duration_ms_bucket[5m])) > 10000
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "Lindy P95 latency above 10s"

Resources

Next Steps

Proceed to lindy-incident-runbook for incident response.

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon