Back to list
jeremylongshore

lindy-core-workflow-a

by jeremylongshore

Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.

1,042🍴 135📅 Jan 23, 2026

SKILL.md


name: lindy-core-workflow-a description: | Core Lindy workflow for creating and configuring AI agents. Use when building new agents, defining agent behaviors, or setting up agent capabilities. Trigger with phrases like "create lindy agent", "build lindy agent", "lindy agent workflow", "configure lindy agent". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Lindy Core Workflow A: Agent Creation

Overview

Complete workflow for creating, configuring, and deploying Lindy AI agents.

Prerequisites

  • Completed lindy-install-auth setup
  • Understanding of agent use case
  • Clear instructions/persona defined

Instructions

Step 1: Define Agent Specification

interface AgentSpec {
  name: string;
  description: string;
  instructions: string;
  tools: string[];
  model?: string;
  temperature?: number;
}

const agentSpec: AgentSpec = {
  name: 'Customer Support Agent',
  description: 'Handles customer inquiries and support tickets',
  instructions: `
    You are a helpful customer support agent.
    - Be polite and professional
    - Ask clarifying questions when needed
    - Escalate complex issues to human support
    - Always confirm resolution with the customer
  `,
  tools: ['email', 'calendar', 'knowledge-base'],
  model: 'gpt-4',
  temperature: 0.7,
};

Step 2: Create the Agent

import { Lindy } from '@lindy-ai/sdk';

const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });

async function createAgent(spec: AgentSpec) {
  const agent = await lindy.agents.create({
    name: spec.name,
    description: spec.description,
    instructions: spec.instructions,
    tools: spec.tools,
    config: {
      model: spec.model || 'gpt-4',
      temperature: spec.temperature || 0.7,
    },
  });

  console.log(`Created agent: ${agent.id}`);
  return agent;
}

Step 3: Configure Agent Tools

async function configureTools(agentId: string, tools: string[]) {
  for (const tool of tools) {
    await lindy.agents.addTool(agentId, {
      name: tool,
      enabled: true,
    });
  }
  console.log(`Configured ${tools.length} tools`);
}

Step 4: Test the Agent

async function testAgent(agentId: string) {
  const testCases = [
    'Hello, I need help with my order',
    'Can you check my subscription status?',
    'I want to cancel my account',
  ];

  for (const input of testCases) {
    const result = await lindy.agents.run(agentId, { input });
    console.log(`Input: ${input}`);
    console.log(`Output: ${result.output}\n`);
  }
}

Output

  • Fully configured AI agent
  • Connected tools and integrations
  • Tested agent responses
  • Ready for deployment

Error Handling

ErrorCauseSolution
Tool not foundInvalid tool nameCheck available tools list
Instructions too longExceeds limitSummarize or split instructions
Model unavailableUnsupported modelUse default gpt-4

Examples

Complete Agent Creation Flow

async function main() {
  // Create agent
  const agent = await createAgent(agentSpec);

  // Configure tools
  await configureTools(agent.id, agentSpec.tools);

  // Test agent
  await testAgent(agent.id);

  console.log(`Agent ${agent.id} is ready!`);
}

main().catch(console.error);

Resources

Next Steps

Proceed to lindy-core-workflow-b for task automation workflows.

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon