← Back to list

langchain-sdk-patterns
by jeremylongshore
Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.
⭐ 1,042🍴 135📅 Jan 23, 2026
SKILL.md
name: langchain-sdk-patterns description: | Apply production-ready LangChain SDK patterns for chains, agents, and memory. Use when implementing LangChain integrations, refactoring code, or establishing team coding standards for LangChain applications. Trigger with phrases like "langchain SDK patterns", "langchain best practices", "langchain code patterns", "idiomatic langchain", "langchain architecture". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
LangChain SDK Patterns
Overview
Production-ready patterns for LangChain applications including LCEL chains, structured output, and error handling.
Prerequisites
- Completed
langchain-install-authsetup - Familiarity with async/await patterns
- Understanding of error handling best practices
Core Patterns
Pattern 1: Type-Safe Chain with Pydantic
from pydantic import BaseModel, Field
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
class SentimentResult(BaseModel):
"""Structured output for sentiment analysis."""
sentiment: str = Field(description="positive, negative, or neutral")
confidence: float = Field(description="Confidence score 0-1")
reasoning: str = Field(description="Brief explanation")
llm = ChatOpenAI(model="gpt-4o-mini")
structured_llm = llm.with_structured_output(SentimentResult)
prompt = ChatPromptTemplate.from_template(
"Analyze the sentiment of: {text}"
)
chain = prompt | structured_llm
# Returns typed SentimentResult
result: SentimentResult = chain.invoke({"text": "I love LangChain!"})
print(f"Sentiment: {result.sentiment} ({result.confidence})")
Pattern 2: Retry with Fallback
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables import RunnableWithFallbacks
primary = ChatOpenAI(model="gpt-4o")
fallback = ChatAnthropic(model="claude-3-5-sonnet-20241022")
# Automatically falls back on failure
robust_llm = primary.with_fallbacks([fallback])
response = robust_llm.invoke("Hello!")
Pattern 3: Async Batch Processing
import asyncio
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
llm = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_template("Summarize: {text}")
chain = prompt | llm
async def process_batch(texts: list[str]) -> list:
"""Process multiple texts concurrently."""
inputs = [{"text": t} for t in texts]
results = await chain.abatch(inputs, config={"max_concurrency": 5})
return results
# Usage
results = asyncio.run(process_batch(["text1", "text2", "text3"]))
Pattern 4: Streaming with Callbacks
from langchain_openai import ChatOpenAI
from langchain_core.callbacks import StreamingStdOutCallbackHandler
llm = ChatOpenAI(
model="gpt-4o-mini",
streaming=True,
callbacks=[StreamingStdOutCallbackHandler()]
)
# Streams tokens to stdout as they arrive
for chunk in llm.stream("Tell me a story"):
# Each chunk contains partial content
pass
Pattern 5: Caching for Cost Reduction
from langchain_openai import ChatOpenAI
from langchain_core.globals import set_llm_cache
from langchain_community.cache import SQLiteCache
# Enable SQLite caching
set_llm_cache(SQLiteCache(database_path=".langchain_cache.db"))
llm = ChatOpenAI(model="gpt-4o-mini")
# First call hits API
response1 = llm.invoke("What is 2+2?")
# Second identical call uses cache (no API cost)
response2 = llm.invoke("What is 2+2?")
Output
- Type-safe chains with Pydantic models
- Robust error handling with fallbacks
- Efficient async batch processing
- Cost-effective caching strategies
Error Handling
Standard Error Pattern
from langchain_core.exceptions import OutputParserException
from openai import RateLimitError, APIError
def safe_invoke(chain, input_data, max_retries=3):
"""Invoke chain with error handling."""
for attempt in range(max_retries):
try:
return chain.invoke(input_data)
except RateLimitError:
if attempt < max_retries - 1:
time.sleep(2 ** attempt)
continue
raise
except OutputParserException as e:
# Handle parsing failures
return {"error": str(e), "raw": e.llm_output}
except APIError as e:
raise RuntimeError(f"API error: {e}")
Resources
Next Steps
Proceed to langchain-core-workflow-a for chains and prompts workflow.
Score
Total Score
85/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
○説明文
100文字以上の説明がある
0/10
✓人気
GitHub Stars 1000以上
+15
✓最近の活動
1ヶ月以内に更新
+10
✓フォーク
10回以上フォークされている
+5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon

