Back to list
jeremylongshore

langchain-hello-world

by jeremylongshore

Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.

1,042🍴 135📅 Jan 23, 2026

SKILL.md


name: langchain-hello-world description: | Create a minimal working LangChain example. Use when starting a new LangChain integration, testing your setup, or learning basic LangChain patterns with chains and prompts. Trigger with phrases like "langchain hello world", "langchain example", "langchain quick start", "simple langchain code", "first langchain app". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

LangChain Hello World

Overview

Minimal working example demonstrating core LangChain functionality with chains and prompts.

Prerequisites

  • Completed langchain-install-auth setup
  • Valid LLM provider API credentials configured
  • Python 3.9+ or Node.js 18+ environment ready

Instructions

Step 1: Create Entry File

Create a new file hello_langchain.py for your hello world example.

Step 2: Import and Initialize

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate

llm = ChatOpenAI(model="gpt-4o-mini")

Step 3: Create Your First Chain

from langchain_core.output_parsers import StrOutputParser

prompt = ChatPromptTemplate.from_messages([
    ("system", "You are a helpful assistant."),
    ("user", "{input}")
])

chain = prompt | llm | StrOutputParser()

response = chain.invoke({"input": "Hello, LangChain!"})
print(response)

Output

  • Working Python file with LangChain chain
  • Successful LLM response confirming connection
  • Console output showing:
Hello! I'm your LangChain-powered assistant. How can I help you today?

Error Handling

ErrorCauseSolution
Import ErrorSDK not installedRun pip install langchain langchain-openai
Auth ErrorInvalid credentialsCheck environment variable is set
TimeoutNetwork issuesIncrease timeout or check connectivity
Rate LimitToo many requestsWait and retry with exponential backoff
Model Not FoundInvalid model nameCheck available models in provider docs

Examples

Simple Chain (Python)

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

llm = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_template("Tell me a joke about {topic}")
chain = prompt | llm | StrOutputParser()

result = chain.invoke({"topic": "programming"})
print(result)

With Memory (Python)

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage, AIMessage

llm = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_messages([
    ("system", "You are a helpful assistant."),
    MessagesPlaceholder(variable_name="history"),
    ("user", "{input}")
])

chain = prompt | llm

history = []
response = chain.invoke({"input": "Hi!", "history": history})
print(response.content)

TypeScript Example

import { ChatOpenAI } from "@langchain/openai";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { StringOutputParser } from "@langchain/core/output_parsers";

const llm = new ChatOpenAI({ modelName: "gpt-4o-mini" });
const prompt = ChatPromptTemplate.fromTemplate("Tell me about {topic}");
const chain = prompt.pipe(llm).pipe(new StringOutputParser());

const result = await chain.invoke({ topic: "LangChain" });
console.log(result);

Resources

Next Steps

Proceed to langchain-local-dev-loop for development workflow setup.

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon