Back to list
jeremylongshore

klingai-rate-limits

by jeremylongshore

Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.

1,042🍴 135📅 Jan 23, 2026

SKILL.md


name: klingai-rate-limits description: | Handle Kling AI rate limits with proper backoff strategies. Use when experiencing 429 errors or building high-throughput systems. Trigger with phrases like 'klingai rate limit', 'kling ai 429', 'klingai throttle', 'klingai backoff'. allowed-tools: Read, Write, Edit, Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Klingai Rate Limits

Overview

This skill teaches rate limit handling patterns including exponential backoff, token bucket algorithms, request queuing, and concurrent job management for reliable Kling AI integrations.

Prerequisites

  • Kling AI integration
  • Understanding of HTTP status codes
  • Python 3.8+ or Node.js 18+

Instructions

Follow these steps to handle rate limits:

  1. Understand Limits: Know the rate limit structure
  2. Implement Detection: Detect rate limit responses
  3. Add Backoff: Implement exponential backoff
  4. Queue Requests: Add request queuing
  5. Monitor Usage: Track rate limit consumption

Output

Successful execution produces:

  • Rate limit handling without errors
  • Smooth request throughput
  • Proper backoff behavior
  • Concurrent job management

Error Handling

See {baseDir}/references/errors.md for comprehensive error handling.

Examples

See {baseDir}/references/examples.md for detailed examples.

Resources

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon