← Back to list

firecrawl-performance-tuning
by jeremylongshore
Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.
⭐ 1,042🍴 135📅 Jan 23, 2026
SKILL.md
name: firecrawl-performance-tuning description: | Optimize FireCrawl API performance with caching, batching, and connection pooling. Use when experiencing slow API responses, implementing caching strategies, or optimizing request throughput for FireCrawl integrations. Trigger with phrases like "firecrawl performance", "optimize firecrawl", "firecrawl latency", "firecrawl caching", "firecrawl slow", "firecrawl batch". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
FireCrawl Performance Tuning
Overview
Optimize FireCrawl API performance with caching, batching, and connection pooling.
Prerequisites
- FireCrawl SDK installed
- Understanding of async patterns
- Redis or in-memory cache available (optional)
- Performance monitoring in place
Latency Benchmarks
| Operation | P50 | P95 | P99 |
|---|---|---|---|
| Read | 50ms | 150ms | 300ms |
| Write | 100ms | 250ms | 500ms |
| List | 75ms | 200ms | 400ms |
Caching Strategy
Response Caching
import { LRUCache } from 'lru-cache';
const cache = new LRUCache<string, any>({
max: 1000,
ttl: 60000, // 1 minute
updateAgeOnGet: true,
});
async function cachedFireCrawlRequest<T>(
key: string,
fetcher: () => Promise<T>,
ttl?: number
): Promise<T> {
const cached = cache.get(key);
if (cached) return cached as T;
const result = await fetcher();
cache.set(key, result, { ttl });
return result;
}
Redis Caching (Distributed)
import Redis from 'ioredis';
const redis = new Redis(process.env.REDIS_URL);
async function cachedWithRedis<T>(
key: string,
fetcher: () => Promise<T>,
ttlSeconds = 60
): Promise<T> {
const cached = await redis.get(key);
if (cached) return JSON.parse(cached);
const result = await fetcher();
await redis.setex(key, ttlSeconds, JSON.stringify(result));
return result;
}
Request Batching
import DataLoader from 'dataloader';
const firecrawlLoader = new DataLoader<string, any>(
async (ids) => {
// Batch fetch from FireCrawl
const results = await firecrawlClient.batchGet(ids);
return ids.map(id => results.find(r => r.id === id) || null);
},
{
maxBatchSize: 100,
batchScheduleFn: callback => setTimeout(callback, 10),
}
);
// Usage - automatically batched
const [item1, item2, item3] = await Promise.all([
firecrawlLoader.load('id-1'),
firecrawlLoader.load('id-2'),
firecrawlLoader.load('id-3'),
]);
Connection Optimization
import { Agent } from 'https';
// Keep-alive connection pooling
const agent = new Agent({
keepAlive: true,
maxSockets: 10,
maxFreeSockets: 5,
timeout: 30000,
});
const client = new FireCrawlClient({
apiKey: process.env.FIRECRAWL_API_KEY!,
httpAgent: agent,
});
Pagination Optimization
async function* paginatedFireCrawlList<T>(
fetcher: (cursor?: string) => Promise<{ data: T[]; nextCursor?: string }>
): AsyncGenerator<T> {
let cursor: string | undefined;
do {
const { data, nextCursor } = await fetcher(cursor);
for (const item of data) {
yield item;
}
cursor = nextCursor;
} while (cursor);
}
// Usage
for await (const item of paginatedFireCrawlList(cursor =>
firecrawlClient.list({ cursor, limit: 100 })
)) {
await process(item);
}
Performance Monitoring
async function measuredFireCrawlCall<T>(
operation: string,
fn: () => Promise<T>
): Promise<T> {
const start = performance.now();
try {
const result = await fn();
const duration = performance.now() - start;
console.log({ operation, duration, status: 'success' });
return result;
} catch (error) {
const duration = performance.now() - start;
console.error({ operation, duration, status: 'error', error });
throw error;
}
}
Instructions
Step 1: Establish Baseline
Measure current latency for critical FireCrawl operations.
Step 2: Implement Caching
Add response caching for frequently accessed data.
Step 3: Enable Batching
Use DataLoader or similar for automatic request batching.
Step 4: Optimize Connections
Configure connection pooling with keep-alive.
Output
- Reduced API latency
- Caching layer implemented
- Request batching enabled
- Connection pooling configured
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| Cache miss storm | TTL expired | Use stale-while-revalidate |
| Batch timeout | Too many items | Reduce batch size |
| Connection exhausted | No pooling | Configure max sockets |
| Memory pressure | Cache too large | Set max cache entries |
Examples
Quick Performance Wrapper
const withPerformance = <T>(name: string, fn: () => Promise<T>) =>
measuredFireCrawlCall(name, () =>
cachedFireCrawlRequest(`cache:${name}`, fn)
);
Resources
Next Steps
For cost optimization, see firecrawl-cost-tuning.
Score
Total Score
85/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
○説明文
100文字以上の説明がある
0/10
✓人気
GitHub Stars 1000以上
+15
✓最近の活動
1ヶ月以内に更新
+10
✓フォーク
10回以上フォークされている
+5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon

