Back to list
jeremylongshore

detecting-data-anomalies

by jeremylongshore

Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.

1,042🍴 135📅 Jan 23, 2026

SKILL.md


name: detecting-data-anomalies description: | Process identify anomalies and outliers in datasets using machine learning algorithms. Use when analyzing data for unusual patterns, outliers, or unexpected deviations from normal behavior. Trigger with phrases like "detect anomalies", "find outliers", or "identify unusual patterns".

allowed-tools: Read, Bash(python:*), Grep, Glob version: 1.0.0 author: Jeremy Longshore jeremy@intentsolutions.io license: MIT

Detecting Data Anomalies

Overview

This skill provides automated assistance for the described functionality.

Prerequisites

Before using this skill, ensure you have:

  • Dataset in accessible format (CSV, JSON, or database)
  • Python environment with scikit-learn or similar ML libraries
  • Understanding of data distribution and expected patterns
  • Sufficient data volume for statistical significance
  • Knowledge of domain-specific normal behavior
  • Data preprocessing capabilities for cleaning and scaling

Instructions

  1. Load dataset using Read tool
  2. Inspect data structure and identify relevant features
  3. Clean data by handling missing values and inconsistencies
  4. Normalize or scale features as appropriate for algorithm
  5. Split temporal data if time-series analysis is needed
  6. Apply selected algorithm using Bash tool
  7. Generate anomaly scores for each data point
  8. Classify points as normal or anomalous based on threshold
  9. Extract characteristics of identified anomalies

See {baseDir}/references/implementation.md for detailed implementation guide.

Output

  • Total data points analyzed
  • Number of anomalies detected
  • Contamination rate (percentage of anomalies)
  • Algorithm used and configuration parameters
  • Confidence scores for detected anomalies
  • Record identifier and timestamp (if applicable)

Error Handling

See {baseDir}/references/errors.md for comprehensive error handling.

Examples

See {baseDir}/references/examples.md for detailed examples.

Resources

  • Isolation Forest documentation and implementation examples
  • One-Class SVM for novelty detection
  • Local Outlier Factor (LOF) for density-based detection
  • Autoencoder-based anomaly detection for deep learning approaches
  • scikit-learn anomaly detection module

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon