
building-automl-pipelines
by jeremylongshore
Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.
SKILL.md
name: building-automl-pipelines description: | Build automated machine learning pipelines with feature engineering, model selection, and hyperparameter tuning. Use when automating ML workflows from data preparation through model deployment. Trigger with phrases like "build automl pipeline", "automate ml workflow", or "create automated training pipeline".
allowed-tools: Read, Write, Edit, Grep, Glob, Bash(python:*) version: 1.0.0 author: Jeremy Longshore jeremy@intentsolutions.io license: MIT
Building Automl Pipelines
Overview
Build an end-to-end AutoML pipeline: data checks, feature preprocessing, model search/tuning, evaluation, and exportable deployment artifacts. Use this when you want repeatable training runs with a clear budget (time/compute) and a structured output (configs, reports, and a runnable pipeline).
Prerequisites
Before using this skill, ensure you have:
- Python environment with AutoML libraries (Auto-sklearn, TPOT, H2O AutoML, or PyCaret)
- Training dataset in accessible format (CSV, Parquet, or database)
- Understanding of problem type (classification, regression, time-series)
- Sufficient computational resources for automated search
- Knowledge of evaluation metrics appropriate for task
- Target variable and feature columns clearly defined
Instructions
- Identify problem type (binary/multi-class classification, regression, etc.)
- Define evaluation metrics (accuracy, F1, RMSE, etc.)
- Set time and resource budgets for AutoML search
- Specify feature types and preprocessing needs
- Determine model interpretability requirements
- Load training data using Read tool
- Perform initial data quality assessment
- Configure train/validation/test split strategy
- Define feature engineering transformations
- Set up data validation checks
- Initialize AutoML pipeline with configuration
See {baseDir}/references/implementation.md for detailed implementation guide.
Output
- Complete Python implementation of AutoML pipeline
- Data loading and preprocessing functions
- Feature engineering transformations
- Model training and evaluation logic
- Hyperparameter search configuration
- Best model architecture and hyperparameters
Error Handling
See {baseDir}/references/errors.md for comprehensive error handling.
Examples
See {baseDir}/references/examples.md for detailed examples.
Resources
- Auto-sklearn: Automated scikit-learn pipeline construction with metalearning
- TPOT: Genetic programming for pipeline optimization
- H2O AutoML: Scalable AutoML with ensemble methods
- PyCaret: Low-code ML library with automated workflows
- Automated feature selection techniques
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 1000以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon

