Back to list
jeremylongshore

analyzing-text-with-nlp

by jeremylongshore

Hundreds of Claude Code plugins with embedded AI skills. Learn via interactive Jupyter tutorials.

1,042🍴 135📅 Jan 23, 2026

SKILL.md


Overview

This skill empowers Claude to analyze text using the nlp-text-analyzer plugin, extracting meaningful information and insights. It facilitates tasks such as sentiment analysis, keyword extraction, and topic modeling, enabling a deeper understanding of textual data.

How It Works

  1. Request Analysis: Claude receives a user request to analyze text.
  2. Text Processing: The nlp-text-analyzer plugin processes the text using NLP techniques.
  3. Insight Extraction: The plugin extracts insights such as sentiment, keywords, and topics.

When to Use This Skill

This skill activates when you need to:

  • Perform sentiment analysis on a piece of text.
  • Extract keywords from a document.
  • Identify the main topics discussed in a text.

Examples

Example 1: Sentiment Analysis

User request: "Analyze the sentiment of this product review: 'I loved the product! It exceeded my expectations.'"

The skill will:

  1. Process the review text using the nlp-text-analyzer plugin.
  2. Determine the sentiment as positive and provide a confidence score.

Example 2: Keyword Extraction

User request: "Extract the keywords from this news article about the latest AI advancements."

The skill will:

  1. Process the article text using the nlp-text-analyzer plugin.
  2. Identify and return a list of relevant keywords, such as "AI", "advancements", "machine learning", and "neural networks".

Best Practices

  • Clarity: Be specific in your requests to ensure accurate and relevant analysis.
  • Context: Provide sufficient context to improve the quality of the analysis.
  • Iteration: Refine your requests based on the initial results to achieve the desired outcome.

Integration

This skill can be integrated with other tools to provide a comprehensive workflow, such as using the extracted keywords to perform further research or using sentiment analysis to categorize customer feedback.

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon