
mlir-development
by gmh5225
awesome llvm security [Welcome to PR]
SKILL.md
name: mlir-development description: Expertise in MLIR (Multi-Level Intermediate Representation) and CIR (Clang IR) development for domain-specific compilation and high-level optimizations. Use this skill when building ML compilers, domain-specific languages, or working with multi-level compilation pipelines.
MLIR Development Skill
This skill covers MLIR (Multi-Level Intermediate Representation) development for building domain-specific compilers and high-level optimization pipelines.
MLIR Overview
What is MLIR?
MLIR is a compiler infrastructure that enables building reusable and extensible compiler components. It provides:
- Hierarchical, multi-level IR representation
- Extensible operation and type system
- Progressive lowering between abstraction levels
- Rich transformation infrastructure
Architecture
High-Level DSL
↓
Domain-Specific Dialects (e.g., TensorFlow, PyTorch)
↓
Mid-Level Dialects (e.g., Linalg, Affine)
↓
Low-Level Dialects (e.g., LLVM, GPU)
↓
Target Code
Core Concepts
Dialects
Dialects are groupings of operations, types, and attributes:
// Define a custom dialect
class MyDialect : public mlir::Dialect {
public:
explicit MyDialect(mlir::MLIRContext *context)
: Dialect("my_dialect", context,
mlir::TypeID::get<MyDialect>()) {
addOperations<
MyAddOp,
MyMulOp,
MyFuncOp
>();
addTypes<MyTensorType>();
}
static llvm::StringRef getDialectNamespace() {
return "my_dialect";
}
};
Operations
// Define using ODS (Operation Definition Specification)
// In TableGen file (.td)
def MyAddOp : Op<MyDialect, "add", [Pure]> {
let summary = "Add two tensors";
let description = [{
Performs element-wise addition of two tensors.
}];
let arguments = (ins
AnyTensor:$lhs,
AnyTensor:$rhs
);
let results = (outs
AnyTensor:$result
);
let assemblyFormat = [{
$lhs `,` $rhs attr-dict `:` type($result)
}];
}
Types and Attributes
// Custom type definition
class MyTensorType : public mlir::Type::TypeBase<
MyTensorType, mlir::Type, MyTensorTypeStorage> {
public:
using Base::Base;
static MyTensorType get(mlir::MLIRContext *context,
llvm::ArrayRef<int64_t> shape,
mlir::Type elementType) {
return Base::get(context, shape, elementType);
}
llvm::ArrayRef<int64_t> getShape() const;
mlir::Type getElementType() const;
};
Writing MLIR Passes
Transform Pass
#include "mlir/Pass/Pass.h"
#include "mlir/IR/PatternMatch.h"
struct MyOptimizationPass
: public mlir::PassWrapper<MyOptimizationPass,
mlir::OperationPass<mlir::func::FuncOp>> {
void runOnOperation() override {
mlir::func::FuncOp func = getOperation();
// Walk all operations
func.walk([](mlir::Operation *op) {
// Transform operations
if (auto addOp = llvm::dyn_cast<MyAddOp>(op)) {
optimizeAdd(addOp);
}
});
}
llvm::StringRef getArgument() const final {
return "my-optimization";
}
llvm::StringRef getDescription() const final {
return "My custom optimization pass";
}
};
Pattern-Based Rewriting
// Define rewrite pattern
struct SimplifyRedundantAdd : public mlir::OpRewritePattern<MyAddOp> {
using OpRewritePattern<MyAddOp>::OpRewritePattern;
mlir::LogicalResult matchAndRewrite(
MyAddOp op,
mlir::PatternRewriter &rewriter) const override {
// Match: add(x, 0) -> x
if (auto constOp = op.getRhs().getDefiningOp<ConstantOp>()) {
if (isZero(constOp)) {
rewriter.replaceOp(op, op.getLhs());
return mlir::success();
}
}
return mlir::failure();
}
};
// Apply patterns
void runOnOperation() override {
mlir::RewritePatternSet patterns(&getContext());
patterns.add<SimplifyRedundantAdd>(&getContext());
if (mlir::failed(mlir::applyPatternsAndFoldGreedily(
getOperation(), std::move(patterns)))) {
signalPassFailure();
}
}
Dialect Conversion
Lowering Between Dialects
// Convert high-level ops to lower-level ops
struct MyAddOpLowering : public mlir::OpConversionPattern<MyAddOp> {
using OpConversionPattern<MyAddOp>::OpConversionPattern;
mlir::LogicalResult matchAndRewrite(
MyAddOp op,
OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// Lower to arith dialect
rewriter.replaceOpWithNewOp<mlir::arith::AddFOp>(
op, adaptor.getLhs(), adaptor.getRhs());
return mlir::success();
}
};
// Conversion pass
struct LowerToArithPass : public mlir::PassWrapper<
LowerToArithPass,
mlir::OperationPass<mlir::ModuleOp>> {
void runOnOperation() override {
mlir::ConversionTarget target(getContext());
target.addLegalDialect<mlir::arith::ArithDialect>();
target.addIllegalDialect<MyDialect>();
mlir::RewritePatternSet patterns(&getContext());
patterns.add<MyAddOpLowering>(&getContext());
if (mlir::failed(mlir::applyPartialConversion(
getOperation(), target, std::move(patterns)))) {
signalPassFailure();
}
}
};
Built-in Dialects
Affine Dialect
For polyhedral compilation and loop optimizations:
affine.for %i = 0 to 100 {
affine.for %j = 0 to 100 {
%val = affine.load %A[%i, %j] : memref<100x100xf32>
affine.store %val, %B[%j, %i] : memref<100x100xf32>
}
}
Linalg Dialect
For linear algebra operations:
linalg.matmul ins(%A, %B : tensor<MxKxf32>, tensor<KxNxf32>)
outs(%C : tensor<MxNxf32>) -> tensor<MxNxf32>
SCF Dialect (Structured Control Flow)
%result = scf.for %i = %lb to %ub step %step iter_args(%sum = %init) {
%val = memref.load %A[%i] : memref<?xf32>
%new_sum = arith.addf %sum, %val : f32
scf.yield %new_sum : f32
}
CIR (Clang IR)
Overview
CIR is an MLIR-based representation for C/C++, providing:
- Higher-level representation than LLVM IR
- Better debugging and tooling
- Language-specific optimizations
// CIR example
cir.func @add(%a: !s32i, %b: !s32i) -> !s32i {
%result = cir.binop(add, %a, %b) : !s32i
cir.return %result : !s32i
}
CIR Projects
- llvm/clangir: Official ClangIR implementation
- facebookincubator/clangir: Facebook's CIR experiments
ML/AI Compilation
TensorFlow MLIR
// TensorFlow dialect
%result = "tf.MatMul"(%A, %B) {
transpose_a = false,
transpose_b = false
} : (tensor<4x8xf32>, tensor<8x16xf32>) -> tensor<4x16xf32>
PyTorch MLIR (torch-mlir)
// Torch dialect
%result = torch.aten.mm %A, %B :
!torch.vtensor<[4,8],f32>, !torch.vtensor<[8,16],f32>
-> !torch.vtensor<[4,16],f32>
IREE (Intermediate Representation Execution Environment)
End-to-end MLIR compiler for ML models:
- Portable deployment
- Efficient runtime execution
- Multi-target support (CPU, GPU, TPU)
Testing MLIR
FileCheck Tests
// RUN: mlir-opt %s -my-pass | FileCheck %s
// CHECK-LABEL: func @test_optimization
// CHECK: arith.addi
// CHECK-NOT: my_dialect.add
func @test_optimization(%a: i32, %b: i32) -> i32 {
%result = my_dialect.add %a, %b : i32
return %result : i32
}
Unit Testing
TEST(MyDialect, AddOpConstantFolding) {
mlir::MLIRContext context;
context.loadDialect<MyDialect>();
mlir::OpBuilder builder(&context);
auto loc = builder.getUnknownLoc();
// Create and test operations
auto constA = builder.create<ConstantOp>(loc, 5);
auto constB = builder.create<ConstantOp>(loc, 3);
auto add = builder.create<MyAddOp>(loc, constA, constB);
// Verify folding
EXPECT_TRUE(add.fold().succeeded());
}
Development Tools
mlir-opt
# Run passes
mlir-opt input.mlir -my-pass -o output.mlir
# Convert between dialects
mlir-opt input.mlir -convert-my-to-llvm
# Debug printing
mlir-opt input.mlir -debug-only=my-pass
mlir-translate
# MLIR to LLVM IR
mlir-translate input.mlir --mlir-to-llvmir -o output.ll
# LLVM IR to MLIR
mlir-translate input.ll --import-llvm -o output.mlir
Best Practices
- Progressive Lowering: Lower in multiple stages, not directly to LLVM
- Preserve Semantics: Each lowering should be semantics-preserving
- Use ODS: Define operations in TableGen for consistency
- Test Thoroughly: Use FileCheck for transformation tests
- Document Dialects: Clear operation semantics documentation
Resources
See MLIR and CIR sections in README.md for tutorials and example projects.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 500以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon


