
langgraph-patterns-expert
by frankxai
Professional-grade skills for Claude Code & Claude AI - Transform Claude into a domain expert in seconds
SKILL.md
name: LangGraph Patterns Expert description: Build production-grade agentic workflows with LangGraph using graph-based orchestration, state machines, human-in-the-loop, and advanced control flow version: 1.0.0
LangGraph Patterns Expert Skill
Purpose
Master LangGraph for building production-ready AI agents with fine-grained control, checkpointing, streaming, and complex state management.
Core Philosophy
LangGraph is: An orchestration framework with both declarative and imperative APIs focused on control and durability for production agents.
Not: High-level abstractions that hide complexity - instead provides building blocks for full control.
Migration: LangGraph replaces legacy AgentExecutor - migrate all old code.
The Six Production Features
- Parallelization - Run multiple nodes concurrently
- Streaming - Real-time partial outputs
- Checkpointing - Pause/resume execution
- Human-in-the-Loop - Approval/correction workflows
- Tracing - Observability and debugging
- Task Queue - Asynchronous job processing
Graph-Based Architecture
from langgraph.graph import StateGraph, END
# Define state
class AgentState(TypedDict):
messages: Annotated[list, add_messages]
next_action: str
# Create graph
graph = StateGraph(AgentState)
# Add nodes
graph.add_node("analyze", analyze_node)
graph.add_node("execute", execute_node)
graph.add_node("verify", verify_node)
# Define edges
graph.add_edge("analyze", "execute")
graph.add_conditional_edges(
"execute",
should_verify,
{"yes": "verify", "no": END}
)
# Compile
app = graph.compile()
Core Patterns
Pattern 1: Agent with Tools
from langgraph.prebuilt import create_react_agent
tools = [search_tool, calculator_tool, db_query_tool]
agent = create_react_agent(
model=llm,
tools=tools,
checkpointer=MemorySaver()
)
# Run with streaming
for chunk in agent.stream({"messages": [("user", "Analyze sales data")]}):
print(chunk)
Pattern 2: Multi-Agent Collaboration
# Supervisor coordinates specialist agents
supervisor_graph = StateGraph(SupervisorState)
supervisor_graph.add_node("supervisor", supervisor_node)
supervisor_graph.add_node("researcher", researcher_agent)
supervisor_graph.add_node("analyst", analyst_agent)
supervisor_graph.add_node("writer", writer_agent)
# Supervisor routes to specialists
supervisor_graph.add_conditional_edges(
"supervisor",
route_to_agent,
{
"research": "researcher",
"analyze": "analyst",
"write": "writer",
"finish": END
}
)
Pattern 3: Human-in-the-Loop
from langgraph.checkpoint.sqlite import SqliteSaver
checkpointer = SqliteSaver.from_conn_string("checkpoints.db")
graph = StateGraph(State)
graph.add_node("propose_action", propose)
graph.add_node("human_approval", interrupt()) # Pauses here
graph.add_node("execute_action", execute)
app = graph.compile(checkpointer=checkpointer)
# Run until human input needed
result = app.invoke(input, config={"configurable": {"thread_id": "123"}})
# Human reviews, then resume
app.invoke(None, config={"configurable": {"thread_id": "123"}})
State Management
Short-Term Memory (Session)
class ConversationState(TypedDict):
messages: Annotated[list, add_messages]
context: dict
checkpointer = MemorySaver()
app = graph.compile(checkpointer=checkpointer)
# Maintains context across turns
config = {"configurable": {"thread_id": "user_123"}}
app.invoke({"messages": [("user", "Hello")]}, config)
app.invoke({"messages": [("user", "What did I just say?")]}, config)
Long-Term Memory (Persistent)
from langgraph.checkpoint.postgres import PostgresSaver
checkpointer = PostgresSaver.from_conn_string(db_url)
# Persists across sessions
app = graph.compile(checkpointer=checkpointer)
Advanced Control Flow
Conditional Routing
def route_next(state):
if state["confidence"] > 0.9:
return "approve"
elif state["confidence"] > 0.5:
return "review"
else:
return "reject"
graph.add_conditional_edges(
"classifier",
route_next,
{
"approve": "auto_approve",
"review": "human_review",
"reject": "reject_node"
}
)
Cycles and Loops
def should_continue(state):
if state["iterations"] < 3 and not state["success"]:
return "retry"
return "finish"
graph.add_conditional_edges(
"process",
should_continue,
{"retry": "process", "finish": END}
)
Parallel Execution
from langgraph.graph import START
# Fan out to parallel nodes
graph.add_edge(START, ["agent_a", "agent_b", "agent_c"])
# Fan in to aggregator
graph.add_edge(["agent_a", "agent_b", "agent_c"], "synthesize")
Production Deployment
Streaming for UX
async for event in app.astream_events(input, version="v2"):
if event["event"] == "on_chat_model_stream":
print(event["data"]["chunk"].content, end="")
Error Handling
def error_handler(state):
try:
return execute_risky_operation(state)
except Exception as e:
return {"error": str(e), "next": "fallback"}
graph.add_node("risky_op", error_handler)
graph.add_conditional_edges(
"risky_op",
lambda s: "fallback" if "error" in s else "success"
)
Monitoring with LangSmith
import os
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "..."
# All agent actions automatically logged to LangSmith
app.invoke(input)
Best Practices
DO: ✅ Use checkpointing for long-running tasks ✅ Stream outputs for better UX ✅ Implement human approval for critical actions ✅ Use conditional edges for complex routing ✅ Leverage parallel execution when possible ✅ Monitor with LangSmith in production
DON'T: ❌ Use AgentExecutor (deprecated) ❌ Skip error handling on nodes ❌ Forget to set thread_id for stateful conversations ❌ Over-complicate graphs unnecessarily ❌ Ignore memory management for long conversations
Integration Examples
With Claude
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-sonnet-4-5")
agent = create_react_agent(llm, tools)
With OpenAI
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o")
agent = create_react_agent(llm, tools)
With MCP Servers
from langchain_mcp import MCPTool
github_tool = MCPTool.from_server("github-mcp")
tools = [github_tool, ...]
agent = create_react_agent(llm, tools)
Decision Framework
Use LangGraph when:
- Need fine-grained control over agent execution
- Building complex state machines
- Require human-in-the-loop workflows
- Want production-grade durability (checkpointing)
- Need to support multiple LLM providers
Use alternatives when:
- Want managed platform (use OpenAI AgentKit)
- Need visual builder (use AgentKit)
- Want simpler API (use Claude SDK directly)
- Building on Oracle Cloud only (use Oracle ADK)
Resources
- Docs: https://langchain-ai.github.io/langgraph/
- GitHub: https://github.com/langchain-ai/langgraph
- Tutorials: https://langchain-ai.github.io/langgraph/tutorials/
LangGraph is the production-grade choice for complex agentic workflows requiring maximum control.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon


