Back to list
athola

optimizing-large-skills

by athola

Marketplace repo for Claude Code Plugins developed from personal projects and workflow

127🍴 16📅 Jan 23, 2026

SKILL.md


name: optimizing-large-skills description: | Systematic methodology to reduce skill file size through externalization, consolidation, and progressive loading patterns.

Triggers: large skill, skill optimization, skill size, 300 lines, inline code, skill refactoring, skill context reduction, skill modularization

Use when: skills exceed 300 lines, multiple code blocks (10+) with similar functionality, heavy Python inline with markdown, functions >20 lines embedded

DO NOT use when: skill is under 300 lines and well-organized. DO NOT use when: creating new skills - use modular-skills instead.

Consult this skill when skills-eval shows "Large skill file" warnings. token_budget: 25 progressive_loading: true

Optimizing Large Skills

Systematic methodology for reducing skill file size while preserving functionality through separation of concerns and strategic code organization.

When to Use

Symptoms that trigger this skill:

  • Skills-eval validation shows "[WARN] Large skill file" warnings
  • SKILL.md files exceed 300 lines
  • Multiple code blocks (10+) with similar functionality
  • Heavy Python implementations inline with markdown
  • Functions >20 lines embedded in documentation

Quick Analysis:

# Analyze any skill file for optimization opportunities
python skills/optimizing-large-skills/tools/optimization-patterns.py \
  skills/path/SKILL.md --verbose --generate-plan

Core Pattern: Externalize-Consolidate-Progress

Transformation Pattern

Before: 654-line skill with heavy inline Python implementations After: ~150-line skill with external tools and references

Key Changes:

  • Externalize heavy implementations (>20 lines) to dedicated tools
  • Consolidate similar functions with parameterization
  • Replace code blocks with structured data and tool references
  • Implement progressive loading for non-essential content

Quick Reference

Size Reduction Strategies

StrategyImpactWhen to Use
Externalize Python modules60-70% reductionHeavy implementations (>20 lines)
Consolidate similar functions15-20% reductionRepeated patterns with minor variations
Replace code with structured data10-15% reductionConfiguration-driven logic
Progressive loading patterns5-10% reductionMulti-stage workflows

File Organization

skill-name/
  SKILL.md              # Core documentation (~150-200 lines)
  modules/
    examples.md         # Usage examples and anti-patterns
    patterns.md         # Detailed implementation patterns
  tools/
    analyzer.py         # Heavy implementations with CLI
    config.yaml         # Structured data
  examples/
    basic-usage.py      # Minimal working example

Optimization Workflow

Phase 1: Analysis

  • Identify files >300 lines
  • Count code blocks and functions
  • Measure inline code vs documentation ratio
  • Find repeated patterns and similar functions

Phase 2: Externalization

  • Move heavy implementations (>20 lines) to separate files
  • Add CLI interfaces to externalized tools
  • Create tool directory structure
  • Add usage examples for each tool

Phase 3: Consolidation

  • Merge similar functions with parameterization
  • Replace code blocks with structured data where appropriate
  • Implement progressive loading for non-essential content
  • Update skill documentation to reference external tools

Phase 4: Validation

  • Verify line count <300 (target: 150-200)
  • Test all externalized tools work correctly
  • Confirm progressive loading functions
  • Run skills-eval validation to verify size reduction

Quick Decision Tree

Is skill >300 lines?
├─ No → Continue as-is (well-organized skills don't need optimization)
└─ Yes → Analyze composition
    ├─ Has heavy code blocks (>20 lines)?
    │  └─ Yes → Externalize to tools/ with CLI (60-70% reduction)
    ├─ Has repeated patterns?
    │  └─ Yes → Consolidate with parameterization (15-20% reduction)
    ├─ Has structured config data embedded?
    │  └─ Yes → Extract to config.yaml (10-15% reduction)
    └─ Has non-essential details?
       └─ Yes → Use progressive loading (5-10% reduction)

Key Success Factors

DO:

  • ✅ Always add CLI interfaces to external tools
  • ✅ Keep core concepts inline in SKILL.md
  • ✅ Consolidate related functionality
  • ✅ Include working examples
  • ✅ Test all tools have correct references

DON'T:

  • ❌ Externalize without CLI (hard to use/test)
  • ❌ Create too many small files (increases complexity)
  • ❌ Remove essential documentation (reduces discoverability)
  • ❌ Add complex dependencies (hard to maintain)
  • ❌ Skip usage examples (unclear tool usage)

Next Steps

  1. Run automated analysis: Use optimization-patterns.py to generate optimization plan
  2. Review modules: Check modules/patterns.md for detailed implementation patterns
  3. Learn from examples: Review modules/examples.md for anti-patterns to avoid
  4. Apply systematically: Follow the 4-phase workflow above
  5. Validate results: Run skills-eval to confirm optimization success

Modules

Result

Expected Outcome:

  • 50-70% line count reduction
  • 40-60% token usage reduction
  • No skills-eval warnings
  • Clear separation of concerns
  • Maintainable external tools with CLI interfaces

Score

Total Score

70/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

+5
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

0/5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon