Back to list
OmidZamani

dspy-miprov2-optimizer

by OmidZamani

Collection of Claude Skills for DSPy framework - program language models, optimize prompts, and build RAG pipelines systematically

20🍴 4📅 Jan 23, 2026

SKILL.md


name: dspy-miprov2-optimizer version: "1.0.0" dspy-compatibility: "3.1.2" description: This skill should be used when the user asks to "optimize a DSPy program", "use MIPROv2", "tune instructions and demos", "get best DSPy performance", "run Bayesian optimization", mentions "state-of-the-art DSPy optimizer", "joint instruction tuning", or needs maximum performance from a DSPy program with substantial training data (200+ examples). allowed-tools:

  • Read
  • Write
  • Glob
  • Grep

DSPy MIPROv2 Optimizer

Goal

Jointly optimize instructions and few-shot demonstrations using Bayesian Optimization for maximum performance.

When to Use

  • You have 200+ training examples
  • You can afford longer optimization runs (40+ trials)
  • You need state-of-the-art performance
  • Both instructions and demos need tuning

Inputs

InputTypeDescription
programdspy.ModuleProgram to optimize
trainsetlist[dspy.Example]200+ training examples
metriccallableEvaluation function
autostr"light", "medium", or "heavy"
num_trialsintOptimization trials (40+)

Outputs

OutputTypeDescription
compiled_programdspy.ModuleFully optimized program

Workflow

Three-Stage Process

  1. Bootstrap - Generate candidate demonstrations
  2. Propose - Create grounded instruction candidates
  3. Search - Bayesian optimization over combinations

Phase 1: Setup

import dspy
from dspy.teleprompt import MIPROv2

lm = dspy.LM('openai/gpt-4o-mini')
dspy.configure(lm=lm)

Phase 2: Define Program

class RAGAgent(dspy.Module):
    def __init__(self):
        self.retrieve = dspy.Retrieve(k=3)
        self.generate = dspy.ChainOfThought("context, question -> answer")
    
    def forward(self, question):
        context = self.retrieve(question).passages
        return self.generate(context=context, question=question)

Phase 3: Optimize

from dspy.teleprompt import MIPROv2

optimizer = MIPROv2(
    metric=dspy.evaluate.answer_exact_match,
    auto="medium",  # Balanced optimization
    num_threads=24
)

compiled = optimizer.compile(RAGAgent(), trainset=trainset)

Auto Presets

PresetTrialsUse Case
"light"~10Quick iteration
"medium"~40Production optimization
"heavy"~100+Maximum performance

Production Example

import dspy
from dspy.teleprompt import MIPROv2
from dspy.evaluate import Evaluate
import json
import logging

logger = logging.getLogger(__name__)

class ReActAgent(dspy.Module):
    def __init__(self, tools):
        self.react = dspy.ReAct("question -> answer", tools=tools)
    
    def forward(self, question):
        return self.react(question=question)

def search_tool(query: str) -> list[str]:
    """Search knowledge base."""
    results = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')(query, k=3)
    return [r['long_text'] for r in results]

def optimize_agent(trainset, devset):
    """Full MIPROv2 optimization pipeline."""
    
    agent = ReActAgent(tools=[search_tool])
    
    # Baseline evaluation
    evaluator = Evaluate(
        devset=devset,
        metric=dspy.evaluate.answer_exact_match,
        num_threads=8
    )
    baseline = evaluator(agent)
    logger.info(f"Baseline: {baseline:.2%}")
    
    # MIPROv2 optimization
    optimizer = MIPROv2(
        metric=dspy.evaluate.answer_exact_match,
        auto="medium",
        num_threads=24,
        # Custom settings
        num_candidates=15,
        max_bootstrapped_demos=4,
        max_labeled_demos=8
    )
    
    compiled = optimizer.compile(agent, trainset=trainset)
    optimized = evaluator(compiled)
    logger.info(f"Optimized: {optimized:.2%}")
    
    # Save with metadata
    compiled.save("agent_mipro.json")
    
    metadata = {
        "baseline_score": baseline,
        "optimized_score": optimized,
        "improvement": optimized - baseline,
        "num_train": len(trainset),
        "num_dev": len(devset)
    }
    
    with open("optimization_metadata.json", "w") as f:
        json.dump(metadata, f, indent=2)
    
    return compiled, metadata

Instruction-Only Mode

from dspy.teleprompt import MIPROv2

# Disable demos for pure instruction optimization
optimizer = MIPROv2(
    metric=metric,
    auto="medium",
    max_bootstrapped_demos=0,
    max_labeled_demos=0
)

Best Practices

  1. Data quantity matters - 200+ examples for best results
  2. Use auto presets - Start with "medium", adjust based on results
  3. Parallel threads - Use num_threads=24 or higher if available
  4. Monitor costs - Track API usage during optimization
  5. Save intermediate - Bayesian search saves progress

Limitations

  • High computational cost (many LLM calls)
  • Requires substantial training data
  • Optimization time: hours for "heavy" preset
  • Memory intensive for large candidate sets

Official Documentation

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon