Back to list
OmidZamani

dspy-gepa-reflective

by OmidZamani

Collection of Claude Skills for DSPy framework - program language models, optimize prompts, and build RAG pipelines systematically

20🍴 4📅 Jan 23, 2026

SKILL.md


name: dspy-gepa-reflective version: "1.0.0" dspy-compatibility: "3.1.2" description: This skill should be used when the user asks to "optimize an agent with GEPA", "use reflective optimization", "optimize ReAct agents", "provide feedback metrics", mentions "GEPA optimizer", "LLM reflection", "execution trajectories", "agentic systems optimization", or needs to optimize complex multi-step agents using textual feedback on execution traces. allowed-tools:

  • Read
  • Write
  • Glob
  • Grep

DSPy GEPA Optimizer

Goal

Optimize complex agentic systems using LLM reflection on full execution traces with Pareto-based evolutionary search.

When to Use

  • Agentic systems with tool use
  • When you have rich textual feedback on failures
  • Complex multi-step workflows
  • Instruction-only optimization needed

Inputs

InputTypeDescription
programdspy.ModuleAgent or complex program
trainsetlist[dspy.Example]Training examples
metriccallableMust return (score, feedback) tuple
reflection_lmdspy.LMStrong LM for reflection (GPT-4)
autostr"light", "medium", "heavy"

Outputs

OutputTypeDescription
compiled_programdspy.ModuleReflectively optimized program

Workflow

Phase 1: Define Feedback Metric

GEPA requires metrics that return textual feedback:

def gepa_metric(example, pred, trace=None):
    """Must return (score, feedback) tuple."""
    is_correct = example.answer.lower() in pred.answer.lower()
    
    if is_correct:
        feedback = "Correct. The answer accurately addresses the question."
    else:
        feedback = f"Incorrect. Expected '{example.answer}' but got '{pred.answer}'. The model may have misunderstood the question or retrieved irrelevant information."
    
    return is_correct, feedback

Phase 2: Setup Agent

import dspy

def search(query: str) -> list[str]:
    """Search knowledge base for relevant information."""
    rm = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
    results = rm(query, k=3)
    return results if isinstance(results, list) else [results]

def calculate(expression: str) -> float:
    """Safely evaluate mathematical expressions."""
    with dspy.PythonInterpreter() as interp:
        return interp(expression)

agent = dspy.ReAct("question -> answer", tools=[search, calculate])

Phase 3: Optimize with GEPA

dspy.configure(lm=dspy.LM("openai/gpt-4o-mini"))

optimizer = dspy.GEPA(
    metric=gepa_metric,
    reflection_lm=dspy.LM("openai/gpt-4o"),  # Strong model for reflection
    auto="medium"
)

compiled_agent = optimizer.compile(agent, trainset=trainset)

Production Example

import dspy
from dspy.evaluate import Evaluate
import logging

logger = logging.getLogger(__name__)

class ResearchAgent(dspy.Module):
    def __init__(self):
        self.react = dspy.ReAct(
            "question -> answer",
            tools=[self.search, self.summarize]
        )
    
    def search(self, query: str) -> list[str]:
        """Search for relevant documents."""
        rm = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
        results = rm(query, k=5)
        return results if isinstance(results, list) else [results]
    
    def summarize(self, text: str) -> str:
        """Summarize long text into key points."""
        summarizer = dspy.Predict("text -> summary")
        return summarizer(text=text).summary
    
    def forward(self, question):
        return self.react(question=question)

def detailed_feedback_metric(example, pred, trace=None):
    """Rich feedback for GEPA reflection."""
    expected = example.answer.lower().strip()
    actual = pred.answer.lower().strip() if pred.answer else ""
    
    # Exact match
    if expected == actual:
        return 1.0, "Perfect match. Answer is correct and concise."
    
    # Partial match
    if expected in actual or actual in expected:
        return 0.7, f"Partial match. Expected '{example.answer}', got '{pred.answer}'. Answer contains correct info but may be verbose or incomplete."
    
    # Check for key terms
    expected_terms = set(expected.split())
    actual_terms = set(actual.split())
    overlap = len(expected_terms & actual_terms) / max(len(expected_terms), 1)
    
    if overlap > 0.5:
        return 0.5, f"Some overlap. Expected '{example.answer}', got '{pred.answer}'. Key terms present but answer structure differs."
    
    return 0.0, f"Incorrect. Expected '{example.answer}', got '{pred.answer}'. The agent may need better search queries or reasoning."

def optimize_research_agent(trainset, devset):
    """Full GEPA optimization pipeline."""
    
    dspy.configure(lm=dspy.LM("openai/gpt-4o-mini"))
    
    agent = ResearchAgent()
    
    # Convert metric for evaluation (just score)
    def eval_metric(example, pred, trace=None):
        score, _ = detailed_feedback_metric(example, pred, trace)
        return score
    
    evaluator = Evaluate(devset=devset, num_threads=8, metric=eval_metric)
    baseline = evaluator(agent)
    logger.info(f"Baseline: {baseline:.2%}")
    
    # GEPA optimization
    optimizer = dspy.GEPA(
        metric=detailed_feedback_metric,
        reflection_lm=dspy.LM("openai/gpt-4o"),
        auto="medium",
        enable_tool_optimization=True  # Also optimize tool descriptions
    )
    
    compiled = optimizer.compile(agent, trainset=trainset)
    optimized = evaluator(compiled)
    logger.info(f"Optimized: {optimized:.2%}")
    
    compiled.save("research_agent_gepa.json")
    return compiled

Tool Optimization

GEPA can jointly optimize predictor instructions AND tool descriptions:

optimizer = dspy.GEPA(
    metric=gepa_metric,
    reflection_lm=dspy.LM("openai/gpt-4o"),
    auto="medium",
    enable_tool_optimization=True  # Optimize tool docstrings too
)

Best Practices

  1. Rich feedback - More detailed feedback = better reflection
  2. Strong reflection LM - Use GPT-4 or Claude for reflection
  3. Agentic focus - Best for ReAct and multi-tool systems
  4. Trace analysis - GEPA analyzes full execution trajectories

Limitations

  • Requires custom feedback metrics (not just scores)
  • Expensive: uses strong LM for reflection
  • Newer optimizer, less battle-tested than MIPROv2
  • Best for instruction optimization, less for demos

Official Documentation

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon