Back to list
OmidZamani

dspy-finetune-bootstrap

by OmidZamani

Collection of Claude Skills for DSPy framework - program language models, optimize prompts, and build RAG pipelines systematically

20🍴 4📅 Jan 23, 2026

SKILL.md


name: dspy-finetune-bootstrap version: "1.0.0" dspy-compatibility: "3.1.2" description: This skill should be used when the user asks to "fine-tune a DSPy model", "distill a program into weights", "use BootstrapFinetune", "create a student model", "reduce inference costs with fine-tuning", mentions "model distillation", "teacher-student training", or wants to deploy a DSPy program as fine-tuned weights for production efficiency. allowed-tools:

  • Read
  • Write
  • Glob
  • Grep

DSPy BootstrapFinetune Optimizer

Goal

Distill a DSPy program into fine-tuned model weights for efficient production deployment.

When to Use

  • You have a working DSPy program with a large model
  • Need to reduce inference costs
  • Want faster responses (smaller model)
  • Deploying to resource-constrained environments

Inputs

InputTypeDescription
programdspy.ModuleTeacher program to distill
trainsetlist[dspy.Example]Training examples
metriccallableValidation metric (optional)
train_kwargsdictTraining hyperparameters

Outputs

OutputTypeDescription
finetuned_programdspy.ModuleProgram with fine-tuned weights
model_pathstrPath to saved model

Workflow

Phase 1: Prepare Teacher Program

import dspy

# Configure with strong teacher model
dspy.configure(lm=dspy.LM("openai/gpt-4o"))

class TeacherQA(dspy.Module):
    def __init__(self):
        self.cot = dspy.ChainOfThought("question -> answer")
    
    def forward(self, question):
        return self.cot(question=question)

Phase 2: Enable Experimental Features & Generate Training Traces

BootstrapFinetune is experimental and requires enabling the flag:

import dspy
from dspy.teleprompt import BootstrapFinetune

# Enable experimental features
dspy.settings.experimental = True

optimizer = BootstrapFinetune(
    metric=lambda gold, pred, trace=None: gold.answer.lower() in pred.answer.lower(),
    train_kwargs={
        'learning_rate': 5e-5,
        'num_train_epochs': 3,
        'per_device_train_batch_size': 4,
        'warmup_ratio': 0.1
    }
)

Phase 3: Fine-tune Student Model

finetuned = optimizer.compile(
    TeacherQA(),
    trainset=trainset
)

Phase 4: Deploy

# Save the fine-tuned model (saves state-only by default)
finetuned.save("finetuned_qa_model.json")

# Load and use (must recreate architecture first)
loaded = TeacherQA()
loaded.load("finetuned_qa_model.json")
result = loaded(question="What is machine learning?")

Production Example

import dspy
from dspy.teleprompt import BootstrapFinetune
from dspy.evaluate import Evaluate
import logging
import os

# Enable experimental features
dspy.settings.experimental = True

logger = logging.getLogger(__name__)

class ClassificationSignature(dspy.Signature):
    """Classify text into categories."""
    text: str = dspy.InputField()
    label: str = dspy.OutputField(desc="Category: positive, negative, neutral")

class TextClassifier(dspy.Module):
    def __init__(self):
        self.classify = dspy.Predict(ClassificationSignature)
    
    def forward(self, text):
        return self.classify(text=text)

def classification_metric(gold, pred, trace=None):
    """Exact label match."""
    gold_label = gold.label.lower().strip()
    pred_label = pred.label.lower().strip() if pred.label else ""
    return gold_label == pred_label

def finetune_classifier(trainset, devset, output_dir="./finetuned_model"):
    """Full fine-tuning pipeline."""
    
    # Configure teacher (strong model)
    dspy.configure(lm=dspy.LM("openai/gpt-4o"))
    
    teacher = TextClassifier()
    
    # Evaluate teacher
    evaluator = Evaluate(devset=devset, metric=classification_metric, num_threads=8)
    teacher_score = evaluator(teacher)
    logger.info(f"Teacher score: {teacher_score:.2%}")

    # Fine-tune (train_kwargs passed to constructor)
    optimizer = BootstrapFinetune(
        metric=classification_metric,
        train_kwargs={
            'learning_rate': 2e-5,
            'num_train_epochs': 3,
            'per_device_train_batch_size': 8,
            'gradient_accumulation_steps': 2,
            'warmup_ratio': 0.1,
            'weight_decay': 0.01,
            'logging_steps': 10,
            'save_strategy': 'epoch',
            'output_dir': output_dir
        }
    )

    finetuned = optimizer.compile(
        teacher,
        trainset=trainset
    )
    
    # Evaluate fine-tuned model
    student_score = evaluator(finetuned)
    logger.info(f"Student score: {student_score:.2%}")

    # Save (state-only as JSON)
    finetuned.save(os.path.join(output_dir, "final_model.json"))

    return {
        "teacher_score": teacher_score,
        "student_score": student_score,
        "model_path": os.path.join(output_dir, "final_model.json")
    }

# For RAG fine-tuning
class RAGClassifier(dspy.Module):
    """RAG pipeline that can be fine-tuned."""
    
    def __init__(self, num_passages=3):
        self.retrieve = dspy.Retrieve(k=num_passages)
        self.classify = dspy.ChainOfThought("context, text -> label")
    
    def forward(self, text):
        context = self.retrieve(text).passages
        return self.classify(context=context, text=text)

def finetune_rag_classifier(trainset, devset):
    """Fine-tune a RAG-based classifier."""

    # Configure retriever and LM
    colbert = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
    dspy.configure(
        lm=dspy.LM("openai/gpt-4o"),
        rm=colbert
    )

    rag = RAGClassifier()

    # Fine-tune (train_kwargs in constructor)
    optimizer = BootstrapFinetune(
        metric=classification_metric,
        train_kwargs={
            'learning_rate': 1e-5,
            'num_train_epochs': 5
        }
    )

    finetuned = optimizer.compile(
        rag,
        trainset=trainset
    )

    return finetuned

Training Arguments Reference

ArgumentDescriptionTypical Value
learning_rateLearning rate1e-5 to 5e-5
num_train_epochsTraining epochs3-5
per_device_train_batch_sizeBatch size4-16
gradient_accumulation_stepsGradient accumulation2-8
warmup_ratioWarmup proportion0.1
weight_decayL2 regularization0.01
max_grad_normGradient clipping1.0

Best Practices

  1. Strong teacher - Use GPT-4 or Claude as teacher
  2. Quality data - Teacher traces are only as good as training examples
  3. Validate improvement - Compare student to teacher on held-out set
  4. Start with more epochs - Fine-tuning often needs 3-5 epochs
  5. Monitor overfitting - Track validation loss during training

Limitations

  • Requires access to model weights (not API-only models)
  • Training requires GPU resources
  • Student may not match teacher quality on all inputs
  • Fine-tuning takes hours/days depending on data size
  • Model size reduction may cause capability loss

Official Documentation

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon