Back to list
NikiforovAll

nano-banana

by NikiforovAll

Learn practical techniques to enhance your AI-assisted development workflow with Claude Code.

71🍴 12📅 Jan 24, 2026

SKILL.md


name: nano-banana description: This skill should be used for Python scripting and Gemini image generation. Use when users ask to generate images, create AI art, edit images with AI, or run Python scripts with uv. Trigger phrases include "generate an image", "create a picture", "draw", "make an image of", "nano banana", or any image generation request.

Nano Banana Skill

Python scripting with Gemini image generation using uv. Write small, focused scripts using heredocs for quick tasks—no files needed for one-off operations.

Choosing Your Approach

Quick image generation: Use heredoc with inline Python for one-off image requests.

Complex workflows: When multiple steps are needed (generate -> refine -> save), break into separate scripts and iterate.

Scripting tasks: For non-image Python tasks, use the same heredoc pattern with uv run.

Writing Scripts

Execute Python inline using heredocs with inline script metadata for dependencies:

uv run - << 'EOF'
# /// script
# dependencies = ["google-genai", "pillow"]
# ///
from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=["A cute banana character with sunglasses"],
    config=types.GenerateContentConfig(
        response_modalities=['IMAGE']
    )
)

for part in response.parts:
    if part.inline_data is not None:
        image = part.as_image()
        image.save("tmp/generated.png")
        print("Image saved to tmp/generated.png")
EOF

The # /// script block declares dependencies inline using TOML syntax. This makes scripts self-contained and reproducible.

Why these dependencies:

  • google-genai - Gemini API client
  • pillow - Required for .as_image() method (converts base64 to PIL Image) and saving images

Only write to files when:

  • The script needs to be reused multiple times
  • The script is complex and requires iteration
  • The user explicitly asks for a saved script

Basic Template

uv run - << 'EOF'
# /// script
# dependencies = ["google-genai", "pillow"]
# ///
from google import genai
from google.genai import types

client = genai.Client()

# Generate image
response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=["YOUR PROMPT HERE"],
    config=types.GenerateContentConfig(
        response_modalities=['IMAGE']
    )
)

# Save result
for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("tmp/output.png")
        print("Saved: tmp/output.png")
EOF

Key Principles

  1. Small scripts: Each script should do ONE thing (generate, refine, save)
  2. Evaluate output: Always save images and print status to decide next steps
  3. Use tmp/: Save generated images to tmp/ directory by default
  4. Stateless execution: Each script runs independently, no cleanup needed

Workflow Loop

Follow this pattern for complex tasks:

  1. Write a script to generate/process one image
  2. Run it and observe the output
  3. Evaluate - did it work? Check the saved image
  4. Decide - refine prompt or task complete?
  5. Repeat until satisfied

Image Configuration

Configure aspect ratio and resolution:

config=types.GenerateContentConfig(
    response_modalities=['IMAGE'],
    image_config=types.ImageConfig(
        aspect_ratio="16:9",  # "1:1", "16:9", "9:16", "4:3", "3:4"
        image_size="2K"       # "1K", "2K", "4K" (uppercase required)
    )
)

Models

  • gemini-2.5-flash-image - Fast, general purpose image generation
  • gemini-3-pro-image-preview - Advanced, professional asset production (Nano Banana Pro)

Default to gemini-3-pro-image-preview (Nano Banana Pro) for all image generation unless:

  • The user explicitly requests a different model
  • The user wants to save budget/costs
  • The user specifies a simpler or quick generation task

Nano Banana Pro provides higher quality results and should be the recommended choice.

Text + Image Output

To receive both text explanation and image:

config=types.GenerateContentConfig(
    response_modalities=['TEXT', 'IMAGE']
)

Image Editing

Edit existing images by including them in the request:

uv run - << 'EOF'
# /// script
# dependencies = ["google-genai", "pillow"]
# ///
from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

# Load existing image
img = Image.open("input.png")

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[
        "Add a party hat to this character",
        img
    ],
    config=types.GenerateContentConfig(
        response_modalities=['IMAGE']
    )
)

for part in response.parts:
    if part.inline_data is not None:
        part.as_image().save("tmp/edited.png")
        print("Saved: tmp/edited.png")
EOF

Debugging Tips

  1. Print response.parts to see what was returned
  2. Check for text parts - model may include explanations
  3. Save images immediately to verify output visually
  4. Use Read tool to view saved images after generation

Error Recovery

If a script fails:

  1. Check error message for API issues
  2. Verify GOOGLE_API_KEY is set
  3. Try simpler prompt to isolate the issue
  4. Check image format compatibility for edits

Advanced Scenarios

For complex workflows including thinking process, Google Search grounding, multi-turn conversations, and professional asset production, load references/guide.md.

Score

Total Score

70/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon