Back to list
AbianS

code-recall

by AbianS

Ultra-fast MCP server for semantic memory and code analysis

4🍴 0📅 Jan 14, 2026

SKILL.md


name: code-recall description: Use semantic memory from code-recall MCP to remember decisions, patterns, and learnings across sessions. Call get_briefing at session start, check_rules before major changes, and store_observation after important decisions.

code-recall Memory Integration

This skill helps you interact with the code-recall MCP server for persistent memory across coding sessions.

Session Start

At the beginning of each coding session, call get_briefing to:

  • Get statistics about stored memories
  • See recent warnings and failed approaches
  • Pre-fetch context for your focus areas
{
  "tool": "get_briefing",
  "arguments": {
    "focus_areas": ["authentication", "database"]
  }
}

Before Making Changes

Before implementing significant changes:

  1. Search past decisions with search_memory:
{
  "tool": "search_memory",
  "arguments": {
    "query": "authentication approach",
    "category": "decision"
  }
}
  1. Check applicable rules with check_rules:
{
  "tool": "check_rules",
  "arguments": {
    "action": "adding API endpoint for user authentication"
  }
}

After Making Decisions

After making architectural or important decisions, store them with store_observation:

{
  "tool": "store_observation",
  "arguments": {
    "category": "decision",
    "content": "Use JWT for authentication instead of sessions",
    "rationale": "Stateless auth enables horizontal scaling and works better with our microservices architecture",
    "tags": ["auth", "jwt", "architecture"]
  }
}

Categories

  • decision - Architectural or implementation choices
  • pattern - Reusable patterns that work well
  • warning - Things to avoid or be careful about
  • learning - Insights gained from implementation

After Implementation

Once you verify if something worked or failed, record the outcome:

{
  "tool": "record_outcome",
  "arguments": {
    "memory_id": 1,
    "outcome": "JWT implementation works well, token refresh handled smoothly",
    "worked": true
  }
}

Important: Setting worked: false boosts that memory in future searches, helping avoid repeated mistakes.

Creating Rules

To establish project guardrails, use set_rule:

{
  "tool": "set_rule",
  "arguments": {
    "trigger": "adding API endpoint",
    "must_do": ["Add rate limiting", "Write integration tests", "Update API documentation"],
    "must_not": ["Skip authentication middleware"],
    "ask_first": ["Is this a breaking change?", "Does this need versioning?"]
  }
}

Example Workflow

  1. Session starts

    get_briefing({ focus_areas: ["payments"] })
    
  2. About to implement payments

    search_memory({ query: "payment integration" })
    check_rules({ action: "adding payment processing" })
    
  3. Decide on Stripe

    store_observation({
      category: "decision",
      content: "Use Stripe for payments",
      rationale: "Best documentation, webhook support, and PCI compliance handled"
    })
    
  4. After implementation works

    record_outcome({
      memory_id: 5,
      outcome: "Stripe integration complete, webhooks working reliably",
      worked: true
    })
    

When to Store Memories

Do store:

  • Architectural decisions and their rationale
  • Patterns that proved useful
  • Approaches that failed (with worked: false)
  • Project-specific rules and conventions

Don't store:

  • Trivial implementation details
  • Temporary debugging notes
  • Information already in documentation

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon