
smoke-test
by mastra-ai
From the team behind Gatsby, Mastra is a framework for building AI-powered applications and agents with a modern TypeScript stack.
SKILL.md
name: smoke-test description: Create a Mastra project using create-mastra and smoke test the studio in Chrome model: claude-opus-4-5
Smoke Test Skill
Creates a new Mastra project using create-mastra@<tag> and performs smoke testing of the Mastra Studio in Chrome.
Usage
/smoke-test --directory <path> --name <project-name> --tag <version> [--pm <package-manager>] [--llm <provider>]
/smoke-test -d <path> -n <project-name> -t <version> [-p <package-manager>] [-l <provider>]
Parameters
| Parameter | Short | Description | Required | Default |
|---|---|---|---|---|
--directory | -d | Parent directory where project will be created | Yes | - |
--name | -n | Project name (will be created as subdirectory) | Yes | - |
--tag | -t | Version tag for create-mastra (e.g., latest, alpha, 0.10.6) | Yes | - |
--pm | -p | Package manager: npm, yarn, pnpm, or bun | No | npm |
--llm | -l | LLM provider: openai, anthropic, groq, google, cerebras, mistral | No | openai |
Examples
# Minimal (required params only)
/smoke-test -d ~/projects -n my-test-app -t latest
# Full specification
/smoke-test --directory ~/projects --name my-test-app --tag alpha --pm pnpm --llm anthropic
# Using short flags
/smoke-test -d ./projects -n smoke-test-app -t 0.10.6 -p bun -l openai
Step 0: Parameter Validation (MUST RUN FIRST)
CRITICAL: Before proceeding, parse the ARGUMENTS and validate:
- Parse arguments from the ARGUMENTS string provided above
- Check required parameters:
--directoryor-d: REQUIRED - fail if missing--nameor-n: REQUIRED - fail if missing--tagor-t: REQUIRED - fail if missing
- Apply defaults for optional parameters:
--pmor-p: Default tonpmif not provided--llmor-l: Default toopenaiif not provided
- Validate values:
pmmust be one of:npm,yarn,pnpm,bunllmmust be one of:openai,anthropic,groq,google,cerebras,mistraldirectorymust exist (or will be created)nameshould be a valid directory name (no spaces, special chars)
If validation fails: Stop and show usage help with the missing/invalid parameters.
If -h or --help is passed: Show this usage information and stop.
Prerequisites
This skill requires the Claude-in-Chrome MCP server for browser automation. Ensure it's configured and running.
Execution Steps
Step 1: Create the Mastra Project
Run the create-mastra command with explicit parameters to avoid interactive prompts:
# For npm
npx create-mastra@<tag> <project-name> -c agents,tools,workflows,scorers -l <llmProvider> -e
# For yarn
yarn create mastra@<tag> <project-name> -c agents,tools,workflows,scorers -l <llmProvider> -e
# For pnpm
pnpm create mastra@<tag> <project-name> -c agents,tools,workflows,scorers -l <llmProvider> -e
# For bun
bunx create-mastra@<tag> <project-name> -c agents,tools,workflows,scorers -l <llmProvider> -e
Flags explained:
-c agents,tools,workflows,scorers- Include all components-l <provider>- Set the LLM provider-e- Include example code
Being explicit with all parameters ensures the CLI runs non-interactively.
Wait for the installation to complete. This may take 1-2 minutes depending on network speed.
Step 2: Verify Project Structure
After creation, verify the project has:
package.jsonwith mastra dependenciessrc/mastra/index.tsexporting a Mastra instance.envfile (may need to be created)
Step 2.5: Add Agent Network for Network Mode Testing
To enable Network mode testing, add an agent network configuration:
- Create activity-agent.ts in
src/mastra/agents/:
import { Agent } from '@mastra/core/agent';
import { Memory } from '@mastra/memory';
export const activityAgent = new Agent({
id: 'activity-agent',
name: 'Activity Agent',
instructions: `You are a helpful activity planning assistant that suggests activities based on weather conditions.`,
model: '<provider>/<model>', // e.g., 'openai/gpt-4o'
memory: new Memory(),
});
- Create planner-network.ts in
src/mastra/agents/:
import { Agent } from '@mastra/core/agent';
import { Memory } from '@mastra/memory';
import { weatherAgent } from './weather-agent';
import { activityAgent } from './activity-agent';
export const plannerNetwork = new Agent({
id: 'planner-network',
name: 'Planner Network',
instructions: `You are a coordinator that manages weather and activity agents.`,
model: '<provider>/<model>',
agents: { weatherAgent, activityAgent }, // This makes it a network agent
memory: new Memory(), // Memory is REQUIRED for network agents
});
- Update index.ts to register the new agents:
import { activityAgent } from './agents/activity-agent';
import { plannerNetwork } from './agents/planner-network';
// In Mastra config:
agents: { weatherAgent, activityAgent, plannerNetwork },
Note: Network mode requires agents property (sub-agents) and memory (mandatory).
Step 3: Configure Environment Variables
Based on the selected LLM provider, check for the required API key:
| Provider | Required Environment Variable |
|---|---|
| openai | OPENAI_API_KEY |
| anthropic | ANTHROPIC_API_KEY |
| groq | GROQ_API_KEY |
GOOGLE_GENERATIVE_AI_API_KEY | |
| cerebras | CEREBRAS_API_KEY |
| mistral | MISTRAL_API_KEY |
Check in this order:
-
Check global environment first: Run
echo $<ENV_VAR_NAME>to see if the key is already set globally- If set globally, the project will inherit it - no
.envfile needed - Skip to Step 4
- If set globally, the project will inherit it - no
-
Check project
.envfile: If not set globally, check if.envexists in the project and contains the key -
Ask user only if needed: If the key is not available globally or in
.env:- Ask the user for the API key
- Create the
.envfile with the provided key
Only check for the ONE key matching the selected provider - don't check for all providers.
Step 4: Start the Development Server
Navigate to the project directory and start the dev server:
cd <directory>/<project-name>
<packageManager> run dev
The server typically starts on http://localhost:4111. Wait for the server to be ready before proceeding.
Step 5: Smoke Test the Studio
Use the Chrome browser automation tools to test the Mastra Studio.
5.1 Initial Setup
- Get browser context using
tabs_context_mcp - Create a new tab using
tabs_create_mcp - Navigate to
http://localhost:4111
5.2 Test Checklist
Perform the following smoke tests using the Chrome automation tools:
Navigation & Basic Loading
- Studio loads successfully (page contains "Mastra Studio" or shows agents list)
- Take a screenshot of the home page
Agents Page (/agents)
- Navigate to agents page
- Verify at least one agent is listed (the example agent from
--default) - Take a screenshot
Agent Detail (/agents/<agentId>/chat)
- Click on an agent to view details
- Verify the agent overview panel loads
- Verify model settings panel is visible
- Take a screenshot
Agent Chat
- Send a test message to the agent (e.g., "Hello, can you help me?")
- Wait for response
- Verify response appears in the chat
- Take a screenshot of the conversation
Network Mode (/agents/planner-network/chat)
- Navigate to the planner-network agent
- Select "Network" in Chat Method settings
- Send a message: "What activities can I do in [city] based on the weather?"
- Verify network coordination (shows weatherAgent indicator)
- Verify completion check shows success
- Take a screenshot
Tools Page (/tools)
- Navigate to tools page
- Verify tools list loads (should show weatherTool)
- Take a screenshot
Tool Execution (/tools/weatherTool)
- Click on the weatherTool to open detail page
- Find the city input field and enter a test city (e.g., "Tokyo")
- Click Submit button
- Wait for execution to complete
- Verify JSON output appears with weather data (temp, condition, etc.)
- Take a screenshot
Workflows Page (/workflows)
- Navigate to workflows page
- Verify workflows list loads (should show weatherWorkflow)
- Take a screenshot
Workflow Execution (/workflows/weatherWorkflow)
- Click on the weatherWorkflow to open detail page
- Verify visual graph displays (shows workflow steps)
- Find the city input field and enter a test city (e.g., "London")
- Click Run button
- Wait for execution to complete
- Verify steps show success (green checkmarks)
- Click to view JSON output modal
- Verify execution details with timing appear
- Take a screenshot
Settings Page (/settings)
- Navigate to settings page
- Verify settings page loads
- Take a screenshot
Observability Page (/observability)
- Navigate to observability page
- Verify traces list shows recent activity (from previous tests)
- Click on a trace to view details
- Verify timeline view shows steps and timing
- Take a screenshot
Scorers Page (/scorers)
- Navigate to scorers page
- Verify scorers list loads (shows 3 example scorers)
- Take a screenshot
Scorer Detail (use direct URL navigation)
- Navigate directly to
/scorers/completeness-scorer(don't click - use URL navigation) - Verify scorer detail page loads with name, description, and scores table
- Take a screenshot
- Note: Use direct URL navigation for scorer details due to client-side routing timing issues
Additional Pages (verify load only)
- Templates page (
/templates) - Gallery of starter templates - Request Context page (
/request-context) - JSON editor - Processors page (
/processors) - Empty state OK - MCP Servers page (
/mcps) - Empty state OK
5.3 Report Results
After completing all tests, provide a summary:
- Total tests passed/failed
- Any errors encountered
- Screenshots captured
- Recommendations for issues found
Quick Reference
| Step | Action |
|---|---|
| Create Project | cd <directory> && npx create-mastra@<tag> <name> -c agents,tools,workflows,scorers -l <provider> -e |
| Install Deps | Automatic during creation |
| Set Env Vars | Check global env first, then .env, ask user only if needed |
| Start Server | cd <directory>/<name> && npm run dev |
| Studio URL | http://localhost:4111 |
Troubleshooting
Server won't start
- Verify
.envhas required API key - Check if port 4111 is available
- Try
<pm> installto reinstall dependencies
Browser can't connect
- Wait a few seconds for server to fully start
- Check terminal for server ready message
- Verify no firewall blocking localhost
Agent chat fails
- Verify API key is valid
- Check server logs for errors
- Ensure LLM provider API is accessible
Studio Routes
| Feature | Route |
|---|---|
| Agents | /agents |
| Workflows | /workflows |
| Tools | /tools |
| Scorers | /scorers |
| Observability | /observability |
| MCP Servers | /mcps |
| Processors | /processors |
| Templates | /templates |
| Request Context | /request-context |
| Settings | /settings |
Notes
- The
-eflag includes example agents, making smoke testing meaningful - If the user doesn't specify an LLM provider, default to OpenAI as it's most common
- Take screenshots at each major step for documentation/debugging
- Keep the dev server running in the background during testing
- Always use explicit flags (
-c,-l,-e) to ensure non-interactive execution - Network mode requires the
agentsproperty ANDmemoryin the Agent constructor - Scorer detail pages may have issues with browser automation but work manually
- Observability traces appear automatically after running agents or workflows
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 1000以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon

