Back to list
llama-farm

rag-skills

by llama-farm

Deploy any AI model, agent, database, RAG, and pipeline locally or remotely in minutes

792🍴 45📅 Jan 23, 2026

SKILL.md


name: rag-skills description: RAG-specific best practices for LlamaIndex, ChromaDB, and Celery workers. Covers ingestion, retrieval, embeddings, and performance. allowed-tools: Read, Grep, Glob user-invocable: false

RAG Skills for LlamaFarm

Framework-specific patterns and code review checklists for the RAG component.

Extends: python-skills - All Python best practices apply here.

Component Overview

AspectTechnologyVersion
PythonPython3.11+
Document ProcessingLlamaIndex0.13+
Vector StorageChromaDB1.0+
Task QueueCelery5.5+
EmbeddingsUniversal/Ollama/OpenAIMultiple

Directory Structure

rag/
├── api.py                 # Search and database APIs
├── celery_app.py          # Celery configuration
├── main.py                # Entry point
├── core/
│   ├── base.py            # Document, Component, Pipeline ABCs
│   ├── factories.py       # Component factories
│   ├── ingest_handler.py  # File ingestion with safety checks
│   ├── blob_processor.py  # Binary file processing
│   ├── settings.py        # Pydantic settings
│   └── logging.py         # RAGStructLogger
├── components/
│   ├── embedders/         # Embedding providers
│   ├── extractors/        # Metadata extractors
│   ├── parsers/           # Document parsers (LlamaIndex)
│   ├── retrievers/        # Retrieval strategies
│   └── stores/            # Vector stores (ChromaDB, FAISS)
├── tasks/                 # Celery tasks
│   ├── ingest_tasks.py    # File ingestion
│   ├── search_tasks.py    # Database search
│   ├── query_tasks.py     # Complex queries
│   ├── health_tasks.py    # Health checks
│   └── stats_tasks.py     # Statistics
└── utils/
    └── embedding_safety.py  # Circuit breaker, validation

Quick Reference

TopicFileKey Points
LlamaIndexllamaindex.mdDocument parsing, chunking, node conversion
ChromaDBchromadb.mdCollections, embeddings, distance metrics
Celerycelery.mdTask routing, error handling, worker config
Performanceperformance.mdBatching, caching, deduplication

Core Patterns

Document Dataclass

from dataclasses import dataclass, field
from typing import Any

@dataclass
class Document:
    content: str
    metadata: dict[str, Any] = field(default_factory=dict)
    id: str = field(default_factory=lambda: str(uuid.uuid4()))
    source: str | None = None
    embeddings: list[float] | None = None

Component Abstract Base Class

from abc import ABC, abstractmethod

class Component(ABC):
    def __init__(
        self,
        name: str | None = None,
        config: dict[str, Any] | None = None,
        project_dir: Path | None = None,
    ):
        self.name = name or self.__class__.__name__
        self.config = config or {}
        self.logger = RAGStructLogger(__name__).bind(name=self.name)
        self.project_dir = project_dir

    @abstractmethod
    def process(self, documents: list[Document]) -> ProcessingResult:
        pass

Retrieval Strategy Pattern

class RetrievalStrategy(Component, ABC):
    @abstractmethod
    def retrieve(
        self,
        query_embedding: list[float],
        vector_store,
        top_k: int = 5,
        **kwargs
    ) -> RetrievalResult:
        pass

    @abstractmethod
    def supports_vector_store(self, vector_store_type: str) -> bool:
        pass

Embedder with Circuit Breaker

class Embedder(Component):
    DEFAULT_FAILURE_THRESHOLD = 5
    DEFAULT_RESET_TIMEOUT = 60.0

    def __init__(self, ...):
        super().__init__(...)
        self._circuit_breaker = CircuitBreaker(
            failure_threshold=config.get("failure_threshold", 5),
            reset_timeout=config.get("reset_timeout", 60.0),
        )
        self._fail_fast = config.get("fail_fast", True)

    def embed_text(self, text: str) -> list[float]:
        self.check_circuit_breaker()
        try:
            embedding = self._call_embedding_api(text)
            self.record_success()
            return embedding
        except Exception as e:
            self.record_failure(e)
            if self._fail_fast:
                raise EmbedderUnavailableError(str(e)) from e
            return [0.0] * self.get_embedding_dimension()

Review Checklist Summary

When reviewing RAG code:

  1. LlamaIndex (Medium priority)

    • Proper chunking configuration
    • Metadata preservation during parsing
    • Error handling for unsupported formats
  2. ChromaDB (High priority)

    • Thread-safe client access
    • Proper distance metric selection
    • Metadata type compatibility
  3. Celery (High priority)

    • Task routing to correct queue
    • Error logging with context
    • Proper serialization
  4. Performance (Medium priority)

    • Batch processing for embeddings
    • Deduplication enabled
    • Appropriate caching

See individual topic files for detailed checklists with grep patterns.

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 500以上

+10
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

0/5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon