← Back to list
name: chunkhound
description: Semantic code chunking and search patterns for codebase exploration
license: MIT
compatibility: opencode
metadata:
related_mcp_servers: Universal MCP server integration patterns, use skill

chunkhound
by jr2804
This project converts MCP server configurations from any format into the one for your coding agent of choice - just by using any available LLM!
⭐ 2🍴 0📅 Jan 21, 2026
SKILL.md
name: chunkhound
description: Semantic code chunking and search patterns for codebase exploration
license: MIT
compatibility: opencode
metadata:
related_mcp_servers: Universal MCP server integration patterns, use skill mcp-servers
related_knowledge_management: For storing research findings, use skill knowledge-management
ChunkHound
What I Do
Provide universal patterns and best practices for using ChunkHound MCP server tools for semantic code search, regex pattern matching, and deep architectural research across codebases.
Universal ChunkHound Usage Patterns
Tool Selection Guide
| Tool | When to Use | Best For |
|---|---|---|
chunkhound_search_semantic | Understanding concepts, finding similar functionality | "How does authentication work?" "Find error handling patterns" |
chunkhound_search_regex | Exact code patterns, symbol references | "Find all uses of validateToken" "Search for import.*React" |
chunkhound_code_research | Architectural exploration, complex relationships | "Map the complete auth flow" "Understand how caching works" |
chunkhound_get_stats | Database health, performance monitoring | Checking chunk counts, file coverage |
chunkhound_health_check | Server status verification | Ensuring MCP server is operational |
Semantic Search Patterns
# Universal pattern for conceptual code discovery
from chunkhound import search_semantic
# Find authentication-related code by concept
results = search_semantic(
query="how does user authentication work in this codebase?",
page_size=10,
max_response_tokens=20000
)
# Narrow search to specific directory
results = search_semantic(
query="error handling patterns",
path="src/components",
page_size=5
)
Regex Search Patterns
# Universal pattern for exact pattern matching
from chunkhound import search_regex
# Find all function definitions
results = search_regex(
pattern=r"def \w+\(",
page_size=20
)
# Find all class definitions in Python files
results = search_regex(
pattern=r"class \w+:",
include="*.py"
)
Code Research Patterns
# Universal pattern for architectural exploration
from chunkhound import code_research
# Deep architectural analysis
report = code_research(
query="how does the payment processing system work?"
)
# Research specific component relationships
report = code_research(
query="map the data flow from API to database"
)
When to Use Me
Use this skill when:
- Exploring unfamiliar codebases for architectural understanding
- Finding existing patterns before implementing new features
- Debugging by mapping complete system flows
- Refactoring preparation with dependency analysis
- Code archaeology in legacy systems
Universal Examples
Architecture Discovery Workflow
# Step 1: Broad semantic search to understand concepts
auth_concepts = search_semantic(query="authentication implementation")
# Step 2: Extract key symbols for comprehensive search
key_symbols = extract_symbols_from_results(auth_concepts)
# Step 3: Find all references with regex
for symbol in key_symbols:
references = search_regex(pattern=symbol)
# Step 4: Deep research for complete understanding
full_report = code_research(query="complete authentication architecture")
Debugging Pattern Matching
# Find error handling patterns
error_patterns = search_semantic(query="error handling and logging")
# Search for specific error types
validation_errors = search_regex(pattern=r"ValidationError|InvalidInput")
# Research complete error flow
error_flow = code_research(query="how errors propagate through the system")
Refactoring Preparation
# Understand current implementation
current_impl = code_research(query="current caching strategy")
# Find all usage patterns
cache_usage = search_semantic(query="cache usage patterns")
# Identify all cache-related code
cache_symbols = search_regex(pattern=r"(?i)cache")
Best Practices
Search Strategy
- Start Broad: Use semantic search for conceptual understanding
- Narrow Down: Use regex search for precise symbol locations
- Go Deep: Use code research for architectural relationships
Performance Optimization
- Use
pathparameter to limit search scope when possible - Adjust
page_sizebased on expected result volume - Use
max_response_tokensto control output size
Result Interpretation
- Semantic search finds conceptually related code
- Regex search finds exact matches and references
- Code research provides structured architectural reports
Compatibility Notes
This skill works with:
- Any codebase with ChunkHound MCP server configured
- OpenCode agent framework
- Claude-compatible MCP clients
- Projects requiring deep code understanding
Integration with Other Skills
With knowledge-management: Store research findings as memories
store_memory(
type="code_pattern",
title="Authentication architecture discovered",
content=research_report,
tags=["architecture", "authentication"]
)
With issue-tracking: Create tasks based on research findings
create_issue(
title="Refactor authentication based on research",
description=f"Research shows: {key_findings}"
)
Score
Total Score
75/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
✓説明文
100文字以上の説明がある
+10
○人気
GitHub Stars 100以上
0/15
✓最近の活動
1ヶ月以内に更新
+10
○フォーク
10回以上フォークされている
0/5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon

