Back to list
filipstrand

mflux-cli

by filipstrand

MLX native implementations of state-of-the-art generative image models

1,780🍴 116📅 Jan 23, 2026

SKILL.md


name: mflux-cli description: Navigate MFLUX CLI capabilities, locate commands by area, and summarize supported features.

mflux CLI navigation

Use this skill to inventory CLI capabilities, summarize what the CLI supports, and guide where to look for commands without relying on brittle file paths. Because README examples can drift, prefer verifying support against the current CLI entrypoints.

When to use

  • You need to list supported CLI features or commands.
  • You need to find where a capability is implemented in the CLI.
  • You are documenting or refactoring CLI features and want a stable map.
  • A user asks for CLI help, e.g., “Can you help me generate an image using z-image?”, “Which model is best?”, etc.

How to find commands (structure, not exact paths)

  • Common/shared CLI arguments live in the central CLI parser module.
  • Model-specific CLI entrypoints live under each model's CLI package.
  • Repo-level CLI helpers (completions, defaults) live under the shared CLI package.
  • Utilities may add standalone CLIs (e.g., metadata info, LoRA library).

Best practices when constructing CLI calls

  • Inference steps: When constructing a CLI call for any model, check MODEL_INFERENCE_STEPS to use the recommended number of steps for that model (unless the user explicitly specifies how many steps they want).
  • Resource/inspection flags: Mention --low-ram to reduce memory usage and --stepwise-image-output-dir for stepwise outputs when useful.
  • Python API requests: If a user asks for the Python API, treat the equivalent CLI script as the best starting reference for the underlying parameters and defaults.

Capability inventory (current)

Core generation

  • Text-to-image across Flux, Flux2, Qwen, Z-Image Turbo, FIBO.
  • Image-to-image where supported (Flux, Qwen, Z-Image Turbo, FIBO).

Editing and conditioning

  • Kontext image conditioning.
  • In-context editing and reference-image workflows.
  • CATVTON (virtual try-on).
  • Redux multi-image conditioning.
  • ControlNet (Canny).
  • Depth conditioning.
  • Fill / inpainting.
  • Flux2 Edit and Qwen Edit (multi-image edit).

Upscaling

  • SeedVR2 diffusion upscaler (preferred).
  • Flux ControlNet upscaler (legacy).

Model management

  • Quantized inference and saving quantized models.
  • Local model path loading (with base-model hints when needed).

LoRA

  • Load LoRAs, multi-LoRA, scale control.
  • In-context style LoRA shortcuts.
  • LoRA library lookup tool.

Metadata and reproducibility

  • Export JSON metadata per image.
  • Reuse prior parameters from metadata config files.
  • Inspect metadata from existing images.

Prompt tooling

  • Prompt files.
  • Negative prompts where supported (not supported for Flux2).

Training

  • DreamBooth LoRA finetuning.

Utilities

  • DepthPro depth-map extraction.
  • FIBO VLM prompt inspire/refine tools.

Score

Total Score

80/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

0/5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon