
database-query
by Lordjiggy
๐ Discover specialized agents and automation workflows in a community-driven marketplace designed to enhance developer productivity and solve real challenges.
SKILL.md
name: database-query description: Natural language database queries with multi-database support, query optimization, and visual results allowed-tools: ["Bash", "Read", "Write", "Task"] version: 1.0.0 author: GLINCKER Team license: Apache-2.0 keywords: [database, sql, query, natural-language, postgresql, mysql, mongodb, optimization]
Database Query (Natural Language)
โก UNIQUE FEATURE: Query any database using natural language - automatically generates optimized SQL/NoSQL queries, explains query plans, suggests indexes, and visualizes results. Supports PostgreSQL, MySQL, MongoDB, SQLite, and more.
What This Skill Does
Transform natural language into optimized database queries:
- Natural language to SQL: "Show me users who signed up last month" โ
SELECT * FROM users WHERE created_at >= NOW() - INTERVAL '1 month' - Multi-database support: PostgreSQL, MySQL, MongoDB, SQLite, Redis
- Query optimization: Analyzes queries and suggests improvements
- Index suggestions: Recommends indexes for slow queries
- Visual results: Formats query results as tables, charts, JSON
- Query explanation: EXPLAIN ANALYZE with human-readable insights
- Safe mode: Read-only by default with confirmation for writes
- Schema discovery: Auto-learns database structure
Why This Is Unique
First Claude Code skill that:
- Understands intent: Translates vague requests to precise queries
- Cross-database compatible: Same natural language works across SQL/NoSQL
- Performance-aware: Automatically optimizes and suggests indexes
- Safety-first: Prevents destructive operations without confirmation
- Learning mode: Improves by understanding your schema
Instructions
Phase 1: Database Connection & Discovery
-
Identify Database:
Ask user: - Database type (PostgreSQL, MySQL, MongoDB, SQLite, etc.) - Connection method (local, remote, Docker, MCP server) - Connection string or credentials -
Test Connection:
# PostgreSQL psql -h localhost -U user -d database -c "SELECT version();" # MySQL mysql -h localhost -u user -p database -e "SELECT VERSION();" # MongoDB mongosh "mongodb://localhost:27017/database" --eval "db.version()" # SQLite sqlite3 database.db "SELECT sqlite_version();" -
Discover Schema:
# PostgreSQL: Get all tables and columns psql -d database -c "\dt" psql -d database -c "\d+ table_name" # MySQL: Show database structure mysql database -e "SHOW TABLES;" mysql database -e "DESCRIBE table_name;" # MongoDB: List collections and sample documents mongosh database --eval "db.getCollectionNames()" mongosh database --eval "db.collection.findOne()" -
Build Schema Cache:
- Store table/collection names
- Store column names and types
- Store relationships (foreign keys)
- Cache common queries
Phase 2: Natural Language to Query Translation
When user makes a request:
-
Parse Intent:
Analyze the request: - Action: SELECT, INSERT, UPDATE, DELETE, aggregation - Entities: Which tables/collections - Conditions: WHERE clauses - Aggregations: COUNT, SUM, AVG, GROUP BY - Sorting: ORDER BY - Limits: TOP N, pagination -
Generate Query:
Example 1: "Show me all active users"
-- PostgreSQL/MySQL SELECT * FROM users WHERE status = 'active';Example 2: "Count orders by status for last 7 days"
SELECT status, COUNT(*) as count FROM orders WHERE created_at >= NOW() - INTERVAL '7 days' GROUP BY status ORDER BY count DESC;Example 3: "Find top 10 customers by revenue"
SELECT c.name, c.email, SUM(o.total) as revenue FROM customers c JOIN orders o ON c.id = o.customer_id GROUP BY c.id, c.name, c.email ORDER BY revenue DESC LIMIT 10;Example 4: MongoDB aggregation
db.orders.aggregate([ { $match: { status: "completed" } }, { $group: { _id: "$customer_id", total: { $sum: "$amount" } }}, { $sort: { total: -1 } }, { $limit: 10 } ]) -
Validate Query:
- Check table/column names exist
- Verify data types match
- Ensure joins are valid
- Detect potentially dangerous operations
Phase 3: Query Optimization
Before execution:
-
Analyze Query Plan:
-- PostgreSQL EXPLAIN ANALYZE SELECT * FROM users WHERE email LIKE '%@example.com'; -
Suggest Optimizations:
If sequential scan detected: - "This query is scanning all rows. Consider adding an index:" - CREATE INDEX idx_users_email ON users(email); If N+1 query pattern: - "Use JOIN instead of multiple queries" - Show optimized version If missing WHERE clause: - "This will return all rows. Add filters or LIMIT?" -
Rewrite for Performance:
-- Before (slow) SELECT * FROM users WHERE LOWER(email) = 'user@example.com'; -- After (fast - uses index) SELECT * FROM users WHERE email = 'user@example.com';
Phase 4: Safe Execution
-
Determine Query Type:
- Read-only (SELECT): Execute immediately
- Write (INSERT, UPDATE, DELETE): Ask confirmation
- DDL (CREATE, DROP, ALTER): Require explicit confirmation
-
Confirmation for Writes:
โ ๏ธ This query will modify data: UPDATE users SET status = 'inactive' WHERE last_login < '2024-01-01' Estimated affected rows: 1,247 Proceed? [yes/no] -
Transaction Support:
BEGIN; -- Execute query -- Show results -- Ask: COMMIT or ROLLBACK?
Phase 5: Results Formatting
-
Table Format (default):
โโโโโโฌโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโ โ id โ name โ email โ status โ โโโโโโผโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโค โ 1 โ John Doe โ john@example.com โ active โ โ 2 โ Jane Smith โ jane@example.com โ active โ โโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโ 2 rows returned in 0.023s -
Chart Format (for aggregations):
Orders by Status: pending โโโโโโโโโโโโโโโโโโโโ 62 completed โโโโโโโโโโโโโโโโโโโโ 128 cancelled โโโโโโโโโโโโโโโโโโโโ 15 -
JSON Format (for APIs):
{ "query": "SELECT * FROM users LIMIT 2", "execution_time": "0.023s", "row_count": 2, "results": [ {"id": 1, "name": "John Doe", ...}, {"id": 2, "name": "Jane Smith", ...} ] } -
Export Options:
- CSV file
- JSON file
- Markdown table
- Copy to clipboard
Examples
Example 1: Simple Query
User: "Show me recent users"
Skill:
- Interprets "recent" as last 7 days
- Generates query:
SELECT * FROM users WHERE created_at >= NOW() - INTERVAL '7 days' ORDER BY created_at DESC; - Executes and displays results
- Suggests: "Want to filter by status or role?"
Example 2: Complex Aggregation
User: "Which products had the most revenue last quarter?"
Skill:
- Determines tables: products, orders, order_items
- Calculates "last quarter" date range
- Generates optimized query:
SELECT p.id, p.name, SUM(oi.quantity * oi.price) as revenue, COUNT(DISTINCT o.id) as order_count FROM products p JOIN order_items oi ON p.id = oi.product_id JOIN orders o ON oi.order_id = o.id WHERE o.created_at >= DATE_TRUNC('quarter', NOW() - INTERVAL '3 months') AND o.created_at < DATE_TRUNC('quarter', NOW()) AND o.status = 'completed' GROUP BY p.id, p.name ORDER BY revenue DESC LIMIT 10; - Shows results with chart
- Offers to export
Example 3: Performance Investigation
User: "Why is this query slow?"
SELECT * FROM orders WHERE customer_name LIKE 'John%';
Skill:
- Runs EXPLAIN ANALYZE
- Detects: Sequential scan on 10M rows
- Suggests:
โ ๏ธ Performance Issue Detected: Problem: Full table scan (10,485,234 rows) Solution: Add an index on customer_name CREATE INDEX idx_orders_customer_name ON orders(customer_name); Expected improvement: 10,485,234 rows โ ~42 rows Estimated speed-up: 10,000x faster Would you like me to create this index?
Configuration
Create .database-query-config.yml:
databases:
- name: production
type: postgresql
host: localhost
port: 5432
database: myapp
user: readonly_user
ssl: true
read_only: true
- name: analytics
type: mongodb
uri: mongodb://localhost:27017/analytics
- name: cache
type: redis
host: localhost
port: 6379
defaults:
max_rows: 1000
timeout: 30s
explain_threshold: 1s # Auto-explain queries slower than 1s
auto_optimize: true
safety:
require_confirmation_for_writes: true
prevent_drop_table: true
max_affected_rows: 10000
Tool Requirements
- Bash: Execute database CLI commands
- Read: Read config files and schema cache
- Write: Save query results and reports
- Task: Launch optimization analyzer agent
Integration with MCP
Connect to MCP database servers:
# Using PostgreSQL MCP server
mcp_servers:
- name: postgres
command: postgres-mcp
args:
- --connection-string
- postgresql://user:pass@localhost/db
Advanced Features
1. Query History & Favorites
# Save favorite queries
claude db save "monthly_revenue" "SELECT..."
# Run saved query
claude db run monthly_revenue
2. Query Templates
-- Template: user_search
SELECT * FROM users
WHERE {{field}} = {{value}}
AND status = 'active';
3. Data Migration Helper
# Generate migration between databases
claude db migrate --from postgres://... --to mysql://...
4. Schema Diff
# Compare two databases
claude db diff production staging
Best Practices
- Start with schema: Let skill discover your database first
- Use read-only mode: For production databases
- Review before writes: Always check UPDATE/DELETE affects
- Monitor performance: Pay attention to optimization suggestions
- Save common queries: Build a library of frequently-used queries
- Use transactions: For multi-step operations
Limitations
- Maximum 10,000 rows displayed (configurable)
- Query timeout: 30 seconds (configurable)
- Write operations require confirmation
- Some database-specific features may not translate
- Complex stored procedures not supported
Security
- Never stores credentials in plain text
- Read-only mode by default
- SQL injection prevention
- Confirms destructive operations
- Audit logging available
Related Skills
- api-connector - Query APIs with natural language
- data-analyzer - Analyze query results
- schema-designer - Design database schemas
Changelog
Version 1.0.0 (2025-01-13)
- Initial release
- PostgreSQL, MySQL, MongoDB, SQLite support
- Natural language query translation
- Query optimization and EXPLAIN
- Multiple output formats
- Safe mode with confirmations
Contributing
Help expand database support:
- Add new database types (CockroachDB, DynamoDB, Cassandra)
- Improve query optimization
- Add more visualization options
- Create query templates
License
Apache License 2.0 - See LICENSE
Author
GLINCKER Team
- GitHub: @GLINCKER
- Repository: claude-code-marketplace
๐ The most advanced natural language database query skill available!
Score
Total Score
Based on repository quality metrics
SKILL.mdใใกใคใซใๅซใพใใฆใใ
ใฉใคใปใณในใ่จญๅฎใใใฆใใ
100ๆๅญไปฅไธใฎ่ชฌๆใใใ
GitHub Stars 100ไปฅไธ
1ใถๆไปฅๅ ใซๆดๆฐ
10ๅไปฅไธใใฉใผใฏใใใฆใใ
ใชใผใใณIssueใ50ๆชๆบ
ใใญใฐใฉใใณใฐ่จ่ชใ่จญๅฎใใใฆใใ
1ใคไปฅไธใฎใฟใฐใ่จญๅฎใใใฆใใ
Reviews
Reviews coming soon


