← Back to list

meta-learning
by IbIFACE-Tech
Paracle is a framework for building AI native app and project.
⭐ 0🍴 0📅 Jan 19, 2026
SKILL.md
name: meta-learning description: Continuous learning and improvement system for paracle_meta. Use when you need to record feedback, track quality metrics, or improve generation templates over time. license: Apache-2.0 compatibility: Python 3.10+ metadata: author: paracle-team version: "1.0.0" category: quality level: advanced display_name: "Meta Learning" tags: - learning - feedback - improvement - quality - metrics capabilities: - record-feedback - track-quality - evolve-templates - analyze-patterns allowed-tools: Read Write Bash(python:*)
Meta Learning Skill
Overview
This skill enables continuous improvement of the paracle_meta generation system through feedback collection, quality tracking, and template evolution.
When to Use
Use this skill when you need to:
- Record feedback on generated artifacts
- Track generation quality over time
- Improve templates based on patterns
- Analyze common generation issues
Feedback Collection
Recording Feedback
from paracle_meta import MetaAgent
async with MetaAgent() as meta:
# Generate an artifact
result = await meta.generate_agent(
name="TestAgent",
description="A test agent"
)
# Record feedback
await meta.record_feedback(
artifact_id=result.id,
rating=4, # 1-5 scale
feedback="Good structure, but needs more examples",
tags=["documentation", "examples"]
)
Feedback Categories
- Quality (1-5): Overall generation quality
- Accuracy (1-5): How well it matches the request
- Completeness (1-5): Are all necessary parts included
- Usability (1-5): How easy is it to use the output
Detailed Feedback
await meta.record_feedback(
artifact_id=result.id,
ratings={
"quality": 4,
"accuracy": 5,
"completeness": 3,
"usability": 4
},
improvements=[
"Add more edge case handling",
"Include integration examples"
],
issues=[
"Missing error handling section"
]
)
Quality Tracking
View Generation Stats
from paracle_meta import LearningEngine
engine = LearningEngine()
# Get overall stats
stats = await engine.get_stats()
print(f"Total generations: {stats.total}")
print(f"Average quality: {stats.avg_quality:.2f}")
print(f"Success rate: {stats.success_rate:.1%}")
# Stats by artifact type
agent_stats = await engine.get_stats(artifact_type="agent")
workflow_stats = await engine.get_stats(artifact_type="workflow")
Quality Trends
# Get quality over time
trends = await engine.get_quality_trends(
period="7d", # Last 7 days
artifact_type="agent"
)
for day, score in trends.items():
print(f"{day}: {score:.2f}")
Template Evolution
Automatic Improvement
The learning system automatically:
- Identifies common patterns in high-rated generations
- Detects recurring issues in low-rated ones
- Updates templates to incorporate improvements
# Trigger template evolution
evolution_result = await engine.evolve_templates(
artifact_type="agent",
min_samples=10, # Minimum feedback samples needed
threshold=0.8 # Quality threshold for pattern extraction
)
print(f"Templates updated: {len(evolution_result.updates)}")
for update in evolution_result.updates:
print(f" - {update.template}: {update.change}")
Manual Template Updates
from paracle_meta import TemplateLibrary
library = TemplateLibrary()
# Get current template
template = library.get("agent_generation")
# Update template
library.update(
"agent_generation",
additions=["Include error handling section"],
removals=["Deprecated pattern X"]
)
Best Practices Database
Recording Best Practices
from paracle_meta import BestPracticesDatabase
db = BestPracticesDatabase()
# Add a best practice
await db.add(
category="agent_design",
practice="Always include fallback behavior",
rationale="Improves reliability in production",
examples=["...", "..."],
tags=["reliability", "production"]
)
Querying Best Practices
# Get practices for a category
practices = await db.get(category="agent_design")
# Search by tags
security_practices = await db.search(tags=["security"])
# Get recommendations for a generation
recommendations = await db.recommend(
artifact_type="agent",
context={"domain": "security", "complexity": "high"}
)
Cost Tracking
Monitor Generation Costs
from paracle_meta import CostOptimizer
optimizer = CostOptimizer()
# Get cost summary
costs = await optimizer.get_costs(period="30d")
print(f"Total cost: ${costs.total:.2f}")
print(f"By provider:")
for provider, cost in costs.by_provider.items():
print(f" {provider}: ${cost:.2f}")
Cost Optimization
# Get optimization recommendations
recommendations = await optimizer.optimize()
for rec in recommendations:
print(f"- {rec.suggestion}")
print(f" Potential savings: ${rec.savings:.2f}/month")
CLI Integration
# View learning stats (future)
paracle meta stats
# Show quality trends
paracle meta trends --period=7d
# Evolve templates
paracle meta evolve --artifact=agent
# Export feedback data
paracle meta export-feedback --format=json
Storage
Learning data is stored in:
.parac/memory/data/meta_learning.db(SQLite).parac/memory/data/meta_costs.db(cost tracking).parac/memory/data/best_practices.db(best practices).parac/memory/data/meta_templates.db(template versions)
Related Skills
- meta-generation: Generate artifacts
- performance-optimization: Optimize generation
- technical-documentation: Document improvements
Score
Total Score
65/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
○説明文
100文字以上の説明がある
0/10
○人気
GitHub Stars 100以上
0/15
✓最近の活動
1ヶ月以内に更新
+10
○フォーク
10回以上フォークされている
0/5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon
