Back to list
HoangNguyen0403

performance-engineering-standards

by HoangNguyen0403

A collection of Agent Skills Standard and Best Practice for Programming Languages, Frameworks that help our AI Agent follow best practies on frameworks and programming laguages

111🍴 40📅 Jan 23, 2026

SKILL.md


name: Performance Engineering Standards description: Universal standards for high-performance software development across all frameworks. metadata: labels: [performance, optimization, scalability, profiling] triggers: keywords: [performance, optimize, profile, scalability]

Performance Engineering Standards

Universal standards for high-performance software development across all frameworks.

Priority: P1 (OPERATIONAL)

Universal standards for building high-performance software across all frameworks and languages.

🚀 Core Principles

  • Efficiency by Design: Minimize resource consumption (CPU, Memory, Network) without sacrificing readability.
  • Measure First: Never optimize without a baseline. Use profiling tools before and after changes.
  • Scalability: Design systems to handle increased load by optimizing time and space complexity.

💾 Resource Management

  • Memory Efficiency:
    • Avoid memory leaks: explicit cleanup of listeners, observers, and streams.
    • Optimize data structures: use the most efficient collection for the use case (e.g., Set for lookups, List for iteration).
    • Lazy Initialization: Initialize expensive objects only when needed.
  • CPU Optimization:
    • Algorithm Complexity: Aim for $O(1)$ or $O(n)$ where possible; avoid $O(n^2)$ in critical paths.
    • Offload Work: Move heavy computations to background threads or workers.
    • Minimize Re-computation: Use memoization for pure, expensive functions.

🌐 Network & I/O

  • Payload Reduction: Use efficient serialization (JSON minification, Protobuf) and compression.
  • Batching: Group multiple small requests into single bulk operations.
  • Caching Strategy:
    • Implement multi-level caching (Memory -> Storage -> Network).
    • Use appropriate TTL (Time To Live) and invalidation strategies.
  • Non-blocking I/O: Always use asynchronous operations for file system and network access.

⚡ UI/UX Performance

  • Minimize Main Thread Work: Keep animations and interactions fluid by keeping the main thread free.
  • Virtualization: Use lazy loading or virtualization for long lists/large datasets.
  • Tree Shaking: Ensure build tools remove unused code and dependencies.

📊 Monitoring & Testing

  • Benchmarking: Write micro-benchmarks for performance-critical functions.
  • SLIs/SLOs: Define Service Level Indicators (latency, throughput) and Objectives.
  • Load Testing: Test system behavior under peak and stress conditions.

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

+5
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon