
databases
by zircote
Claude Code plugin with 115+ specialized Opus 4.5 agents organized by domain, 54 development skills, and exploration commands
SKILL.md
name: databases description: Work with MongoDB (document database, BSON documents, aggregation pipelines, Atlas cloud) and PostgreSQL (relational database, SQL queries, psql CLI, pgAdmin). Use when designing database schemas, writing queries and aggregations, optimizing indexes for performance, performing database migrations, configuring replication and sharding, implementing backup and restore strategies, managing database users and permissions, analyzing query performance, or administering production databases. license: MIT
Databases Skill
Unified guide for working with MongoDB (document-oriented) and PostgreSQL (relational) databases. Choose the right database for your use case and master both systems.
Database Selection Guide
Choose MongoDB When:
- Schema flexibility: frequent structure changes, heterogeneous data
- Document-centric: natural JSON/BSON data model
- Horizontal scaling: need to shard across multiple servers
- High write throughput: IoT, logging, real-time analytics
- Nested/hierarchical data: embedded documents preferred
- Rapid prototyping: schema evolution without migrations
Best for: Content management, catalogs, IoT time series, real-time analytics, mobile apps, user profiles
Choose PostgreSQL When:
- Strong consistency: ACID transactions critical
- Complex relationships: many-to-many joins, referential integrity
- SQL requirement: team expertise, reporting tools, BI systems
- Data integrity: strict schema validation, constraints
- Mature ecosystem: extensive tooling, extensions
- Complex queries: window functions, CTEs, analytical workloads
Best for: Financial systems, e-commerce transactions, ERP, CRM, data warehousing, analytics
Both Support:
- JSON/JSONB storage and querying
- Full-text search capabilities
- Geospatial queries and indexing
- Replication and high availability
- ACID transactions (MongoDB 4.0+)
- Strong security features
Quick Start
MongoDB Setup
Connection
mongodb+srv://user:pass@cluster.mongodb.net/db
Shell
mongosh "mongodb+srv://cluster.mongodb.net/mydb"
Basic operations
db.users.insertOne({ name: "Alice", age: 30 }) db.users.find({ age: { $gte: 18 } }) db.users.updateOne({ name: "Alice" }, { $set: { age: 31 } }) db.users.deleteOne({ name: "Alice" })
PostgreSQL Setup
Start service
sudo systemctl start postgresql
Connect
psql -U postgres -d mydb
Basic operations
CREATE TABLE users (id SERIAL PRIMARY KEY, name TEXT, age INT); INSERT INTO users (name, age) VALUES ('Alice', 30); SELECT * FROM users WHERE age >= 18; UPDATE users SET age = 31 WHERE name = 'Alice'; DELETE FROM users WHERE name = 'Alice';
Common Operations
Create/Insert
Read/Query
Update
Delete
Indexing
Reference Navigation
MongoDB References
- mongodb-crud.md - CRUD operations, query operators, atomic updates
- mongodb-aggregation.md - Aggregation pipeline, stages, operators, patterns
- mongodb-indexing.md - Index types, compound indexes, performance optimization
- mongodb-atlas.md - Atlas cloud setup, clusters, monitoring, search
PostgreSQL References
- postgresql-queries.md - SELECT, JOINs, subqueries, CTEs, window functions
- postgresql-psql-cli.md - psql commands, meta-commands, scripting
- postgresql-performance.md - EXPLAIN, query optimization, vacuum, indexes
- postgresql-administration.md - User management, backups, replication, maintenance
Python Utilities
Database utility scripts in scripts/:
- db_migrate.py - Generate and apply migrations for both databases
- db_backup.py - Backup and restore MongoDB and PostgreSQL
- db_performance_check.py - Analyze slow queries and recommend indexes
Run backup
python scripts/db_backup.py --db postgres --output /backups/
Check performance
python scripts/db_performance_check.py --db mongodb --threshold 100ms
Key Differences Summary
| Feature | MongoDB | PostgreSQL |
|---|---|---|
| Data Model | Document (JSON/BSON) | Relational (Tables/Rows) |
| Schema | Flexible, dynamic | Strict, predefined |
| Query Language | MongoDB Query Language | SQL |
| Joins | $lookup (limited) | Native, optimized |
| Transactions | Multi-document (4.0+) | Native ACID |
| Scaling | Horizontal (sharding) | Vertical (primary), Horizontal (extensions) |
| Indexes | Single, compound, text, geo, etc | B-tree, hash, GiST, GIN, etc |
Best Practices
MongoDB:
- Use embedded documents for 1-to-few relationships
- Reference documents for 1-to-many or many-to-many
- Index frequently queried fields
- Use aggregation pipeline for complex transformations
- Enable authentication and TLS in production
- Use Atlas for managed hosting
PostgreSQL:
- Normalize schema to 3NF, denormalize for performance
- Use foreign keys for referential integrity
- Index foreign keys and frequently filtered columns
- Use EXPLAIN ANALYZE to optimize queries
- Regular VACUUM and ANALYZE maintenance
- Connection pooling (pgBouncer) for web apps
Resources
- MongoDB: https://www.mongodb.com/docs/
- PostgreSQL: https://www.postgresql.org/docs/
- MongoDB University: https://learn.mongodb.com/
- PostgreSQL Tutorial: https://www.postgresqltutorial.com/
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
