
gpt-researcher
by yudame
Research tools and frameworks for evidence-based analysis across technology, health, economics, and human performance. Outputs include podcasts, reports, and educational materials.
SKILL.md
name: gpt-researcher description: Run GPT-Researcher multi-agent deep research framework locally using OpenAI GPT-5.2. Replaces ChatGPT Deep Research with local control. Researches 100+ sources in parallel, provides comprehensive citations. Use for Phase 3 industry/technical research or comprehensive synthesis. Takes 6-20 min depending on report type. Supports multiple LLM providers.
GPT-Researcher Skill
Use this skill to run GPT-Researcher's multi-agent deep research framework locally with OpenAI's GPT-5.2 model.
What is GPT-Researcher?
GPT-Researcher is an autonomous multi-agent research framework that:
- Uses parallel agent execution for faster research
- Researches 100+ sources across the web
- Provides comprehensive citations and source validation
- Benchmarks competitively with ChatGPT Deep Research and Claude Research
- Runs locally with full control over configuration
Default Model: OpenAI GPT-5.2 (latest flagship model, 2025)
GPT-5.2 Highlights:
- Best general-purpose model for complex reasoning and agentic tasks
- Improved instruction following and accuracy over GPT-5.1
- Enhanced code generation and tool calling
- Better context management and token efficiency
- Knowledge cutoff: August 2025
Carnegie Mellon Benchmark (DeepResearchGym, May 2025): GPT-Researcher outperformed Perplexity, OpenAI Deep Research, and other tools on:
- Citation quality
- Report quality
- Information coverage
When to Use This Skill
Use GPT-Researcher for deep research tasks in the podcast episode workflow:
- Phase 3: Industry & Technical Research (replaces ChatGPT Deep Research browser automation)
- Phase 3: Comprehensive Synthesis (alternative to Claude Deep Research)
- Any multi-dimensional research requiring parallel information gathering
Advantages over browser automation:
- No Chrome/browser required
- Fully scriptable and reproducible
- Choose any LLM provider (OpenAI, Anthropic, etc.)
- Run in background or CI/CD pipelines
- Complete control over configuration
Installation
This skill requires uv, a fast Python package manager:
# Install uv (if not already installed)
curl -LsSf https://astral.sh/uv/install.sh | sh
# Install dependencies
cd /Users/valorengels/src/research/podcast/tools
uv pip install gpt-researcher langchain-openai python-dotenv
Configuration
API keys are stored in /Users/valorengels/.env and auto-loaded via ~/.zshenv for all shells.
Required for default:
- OPENAI_API_KEY - For GPT-5.2, GPT-5.2-Pro, etc.
Optional providers:
- OPENROUTER_API_KEY - Unified access to 400+ models
- ANTHROPIC_API_KEY - Claude Opus, Sonnet
- XAI_API_KEY - Grok models
Usage
Basic Usage (GPT-5.2)
cd /Users/valorengels/src/research/podcast/tools
uv run python gpt_researcher_run.py "Your research prompt here"
This uses GPT-5.2 by default - OpenAI's latest and most capable general-purpose model.
Read Prompt from File
cd /Users/valorengels/src/research/podcast/tools
uv run python gpt_researcher_run.py --file ../episodes/YYYY-MM-DD-slug/prompt.txt
Save to File
uv run python gpt_researcher_run.py "prompt" --output results.md
Specify Different Model
# Use GPT-5.2-Pro for harder thinking (more compute)
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-5.2-pro
# Use GPT-5-Mini for cost-optimized research
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-5-mini
# Use Anthropic Claude Opus 4
uv run python gpt_researcher_run.py "prompt" --model anthropic:claude-opus-4
# Use OpenRouter for any model
uv run python gpt_researcher_run.py "prompt" --model openrouter/anthropic/claude-opus-4.5
Report Types
# Standard research report (default, 6-10 min)
uv run python gpt_researcher_run.py "prompt" --report-type research_report
# Detailed comprehensive report (10-20 min)
uv run python gpt_researcher_run.py "prompt" --report-type detailed_report
# Quick report (3-5 min, fewer sources)
uv run python gpt_researcher_run.py "prompt" --report-type quick_report
Integration with Podcast Workflow
Phase 3: Industry & Technical Research
Replaces: ChatGPT Deep Research browser automation
Use Case: Industry reports, technical documentation, case studies
cd podcast/tools
uv run python gpt_researcher_run.py --file ../episodes/YYYY-MM-DD-slug/phase3_prompt.txt \
--model openai:gpt-5.2 \
--report-type research_report \
--output ../episodes/YYYY-MM-DD-slug/research-results-industry.md
Expected time: 6-10 minutes Output: Research report with 50-100+ sources, industry and technical focus
Phase 3: Comprehensive Synthesis
Use Case: Deep multi-dimensional research with comprehensive synthesis
cd podcast/tools
uv run python gpt_researcher_run.py --file ../episodes/YYYY-MM-DD-slug/phase3_prompt.txt \
--model openai:gpt-5.2 \
--report-type detailed_report \
--output ../episodes/YYYY-MM-DD-slug/research-results-comprehensive.md
Expected time: 10-20 minutes Output: Comprehensive report with 100+ sources, multi-agent synthesis
Using GPT-5.2-Pro for Complex Problems
For particularly challenging research that requires deeper thinking:
cd podcast/tools
uv run python gpt_researcher_run.py --file ../episodes/YYYY-MM-DD-slug/prompt.txt \
--model openai:gpt-5.2-pro \
--report-type detailed_report \
--output ../episodes/YYYY-MM-DD-slug/research-results-pro.md
Expected time: 15-25 minutes Output: Highest quality research with extended reasoning
Output Format
The script outputs markdown-formatted research with:
- Header: Date, model, prompt
- Research report: Comprehensive findings with structure
- Citations: Inline citations with source URLs
- Sources: List of sources researched
Example output structure:
# GPT-Researcher Results
**Date:** 2025-12-14 14:30
**Model:** openai:gpt-5.2
**Prompt:** Research early childhood educator burnout interventions
---
## Executive Summary
[Comprehensive overview]
## Key Findings
[Detailed findings with citations]
## Methodology Considerations
[Study quality notes]
## Sources
[List of 100+ sources with URLs]
Why GPT-5.2 for Research?
OpenAI's GPT-5.2 is their latest flagship model optimized for:
- Complex reasoning - Multi-step analysis and synthesis
- Research tasks - Information gathering and validation
- Agentic workflows - Tool calling and context management
- Accuracy - Improved instruction following and token efficiency
- Code generation - Especially front-end UI creation
- Multimodality - Enhanced vision capabilities
This makes it ideal for deep research compared to previous models.
Model comparison:
- gpt-5.2: Best for complex reasoning and comprehensive research
- gpt-5.2-pro: Best for hardest problems requiring extended thinking
- gpt-5-mini: Best for cost-optimized research
- claude-opus-4: Best for synthesis and writing quality
Comparison: GPT-Researcher vs ChatGPT Deep Research
| Feature | GPT-Researcher (Local) | ChatGPT Deep Research (Browser) |
|---|---|---|
| Model | GPT-5.2 (latest) | ChatGPT (whatever's enabled) |
| Control | Full local control | Browser automation |
| Setup | API key only | Chrome + auth + browser automation |
| Reliability | High (API) | Medium (UI changes) |
| Sources analyzed | 100+ | 25-50 |
| Processing time | 6-20 min | 5-10 min |
| Cost | Pay-per-use (~$0.27-2) | $200/mo subscription |
| Headless | Yes | No (needs browser) |
| Maintenance | Low | High (UI changes) |
| Benchmark | CMU winner | Commercial |
Decision: GPT-Researcher with GPT-5.2 replaces ChatGPT Deep Research browser automation.
Advanced Usage
Environment Variables
GPT-Researcher uses these environment variables (set in .env):
# Required: At least one API key
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
OPENROUTER_API_KEY=sk-or-...
XAI_API_KEY=...
# Optional: Override via --model flag
FAST_LLM=openai:gpt-5.2 # Quick tasks
SMART_LLM=openai:gpt-5.2 # Deep analysis
STRATEGIC_LLM=openai:gpt-5.2 # Planning
# Optional: Search provider
RETRIEVER=tavily # Default (best quality)
# or: duckduckgo (free fallback)
Custom Model Selection
# Latest OpenAI GPT-5 family (2025)
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-5.2 # Best for research
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-5.2-pro # Harder thinking
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-5-mini # Cost-optimized
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-5-nano # High-throughput
# Legacy OpenAI models
uv run python gpt_researcher_run.py "prompt" --model openai:o1 # Legacy reasoning
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-4o # Legacy multimodal
# Anthropic Claude
uv run python gpt_researcher_run.py "prompt" --model anthropic:claude-opus-4
uv run python gpt_researcher_run.py "prompt" --model anthropic:claude-sonnet-4
# Via OpenRouter (single API key for all)
uv run python gpt_researcher_run.py "prompt" --model openrouter/openai/gpt-5.2
uv run python gpt_researcher_run.py "prompt" --model openrouter/anthropic/claude-opus-4.5
uv run python gpt_researcher_run.py "prompt" --model openrouter/x-ai/grok-4
Troubleshooting
Error: "No API keys found"
- Check
.envfiles exist in root orpodcast/tools/ - Ensure
OPENAI_API_KEYis set for default GPT-5.2 model - Verify
.envformat:KEY=value(no spaces around=)
Error: "gpt-researcher not installed"
- Run:
cd podcast/tools && uv pip install gpt-researcher langchain-openai python-dotenv - Or ensure you're using:
uv run python gpt_researcher_run.py(auto-installs dependencies)
Research times out or fails
- Try
--report-type quick_reportfor faster results - Check API key has sufficient credits
- Verify OpenAI API key is valid
- Use
--model openai:gpt-5-minifor faster/cheaper alternative
Model not found
- For OpenRouter models, use format:
openrouter/provider/model - Check model names at https://openrouter.ai/models
- For native providers, use format:
provider:model
GPT-5.2 model errors
- Ensure you have access to GPT-5.2 in your OpenAI account
- Fallback to
--model openai:gpt-5-miniif GPT-5.2 unavailable - Check OpenAI API status page
Example Commands
Basic research with GPT-5.2:
uv run python gpt_researcher_run.py "Research quantum computing applications in healthcare"
From file with output:
uv run python gpt_researcher_run.py \
--file research-prompt.txt \
--output results.md
Industry research (typical Phase 3):
uv run python gpt_researcher_run.py \
--file ../episodes/episode-dir/prompt.txt \
--model openai:gpt-5.2 \
--report-type research_report \
--output ../episodes/episode-dir/research-industry.md
Hardest problems with GPT-5.2-Pro:
uv run python gpt_researcher_run.py \
--file prompt.txt \
--model openai:gpt-5.2-pro \
--report-type detailed_report \
--output results-pro.md
Cost-optimized with GPT-5-Mini:
uv run python gpt_researcher_run.py \
--file prompt.txt \
--model openai:gpt-5-mini \
--report-type quick_report \
--output results-mini.md
Comprehensive with Claude:
uv run python gpt_researcher_run.py \
--file prompt.txt \
--model anthropic:claude-opus-4 \
--report-type detailed_report \
--output results-comprehensive.md
Notes
- Default model: OpenAI GPT-5.2 (latest flagship, 2025)
- Processing time: Budget 6-20 minutes for comprehensive research
- API costs: Typically $0.27-2 per research session (varies by model and sources)
- Quality: Competitive with ChatGPT Deep Research on benchmarks
- Local execution: Runs on your machine, full control over configuration
- No browser required: Pure API-based, works in any environment
- Replaces: ChatGPT Deep Research browser automation (deprecated)
- Knowledge cutoff: GPT-5.2 has August 2025 cutoff (most current)
Further Reading
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon

