Back to list
yonatangross

recall

by yonatangross

The Complete AI Development Toolkit for Claude Code — 159 skills, 34 agents, 20 commands, 144 hooks. Production-ready patterns for FastAPI, React 19, LangGraph, security, and testing.

29🍴 4📅 Jan 23, 2026

SKILL.md


name: recall description: Search and retrieve decisions and patterns from knowledge graph. Use when recalling patterns, retrieving memories, finding past decisions. context: inherit version: 2.1.0 author: OrchestKit tags: [memory, search, decisions, patterns, graph-memory, mem0, unified-memory] user-invocable: true

Recall - Search Knowledge Graph

Search past decisions and patterns from the knowledge graph with optional cloud semantic search enhancement.

Graph-First Architecture (v2.1)

The recall skill uses graph memory as PRIMARY search:

  1. Knowledge Graph (PRIMARY): Entity and relationship search via mcp__memory__search_nodes - FREE, zero-config, always works
  2. Semantic Memory (mem0): Optional cloud search via search-memories.py script - requires MEM0_API_KEY, use with --mem0 flag

Benefits of Graph-First:

  • Zero configuration required - works out of the box
  • Explicit entity and relationship queries
  • Fast local search with no network latency
  • No cloud dependency for basic operation
  • Optional cloud enhancement with --mem0 flag for semantic similarity search

Overview

  • Finding past architectural decisions
  • Searching for recorded patterns
  • Looking up project context
  • Retrieving stored knowledge
  • Querying cross-project best practices
  • Finding entity relationships

Usage

/recall <search query>
/recall --category <category> <search query>
/recall --limit <number> <search query>

# Cloud-enhanced search (v2.1.0+)
/recall --mem0 <query>                     # Search BOTH graph AND mem0 cloud
/recall --mem0 --limit 20 <query>          # More results from both systems

# Scoped search
/recall --agent <agent-id> <query>          # Filter by agent scope
/recall --global <query>                    # Search cross-project best practices

Advanced Flags

FlagBehavior
(default)Search graph only
--mem0Search BOTH graph and mem0 cloud
--limit <n>Max results (default: 10)
--category <cat>Filter by category
--agent <agent-id>Filter results to a specific agent's memories
--globalSearch cross-project best practices

Context-Aware Result Limits (CC 2.1.6)

Result limits automatically adjust based on context_window.used_percentage:

Context UsageDefault LimitBehavior
0-70%10 resultsFull results with details
70-85%5 resultsReduced, summarized results
>85%3 resultsMinimal with "more available" hint

Workflow

1. Parse Input

Check for --category <category> flag
Check for --limit <number> flag
Check for --mem0 flag → search_mem0: true
Check for --agent <agent-id> flag → filter by agent_id
Check for --global flag → search global scope
Extract the search query

2. Search Knowledge Graph (PRIMARY)

Use mcp__memory__search_nodes:

{
  "query": "user's search query"
}

Knowledge Graph Search:

  • Searches entity names, types, and observations
  • Returns entities with their relationships
  • Finds patterns like "X uses Y", "X recommends Y"

Entity Types to Look For:

  • Technology: Tools, frameworks, databases (pgvector, PostgreSQL, React)
  • Agent: OrchestKit agents (database-engineer, backend-system-architect)
  • Pattern: Named patterns (cursor-pagination, connection-pooling)
  • Decision: Architectural decisions
  • Project: Project-specific context
  • AntiPattern: Failed patterns

3. Search mem0 (OPTIONAL - only if --mem0 flag)

Skip if --mem0 flag NOT set or MEM0_API_KEY not configured.

Execute the script IN PARALLEL with step 2:

!bash skills/mem0-memory/scripts/crud/search-memories.py \
  --query "user's search query" \
  --user-id "orchestkit-{project-name}-decisions" \
  --limit 10 \
  --enable-graph

User ID Selection:

  • Default: orchestkit-{project-name}-decisions
  • With --global: orchestkit-global-best-practices

Filter Construction:

  • Always include user_id filter
  • With --category: Add { "metadata.category": "{category}" } to AND array
  • With --agent: Add { "agent_id": "ork:{agent-id}" } to AND array

4. Merge and Deduplicate Results (if --mem0)

Only when both systems return results:

  1. Collect results from both systems
  2. For each mem0 memory, check if its text matches a graph entity observation
  3. If matched, mark as [CROSS-REF] and merge metadata
  4. Remove pure duplicates (same content from both systems)
  5. Sort: graph results first, then mem0 results, cross-refs highlighted

5. Format Results

Graph-Only Results (default):

🔍 Found {count} results matching "{query}":

[GRAPH] {entity_name} ({entity_type})
   → {relation1} → {target1}
   → {relation2} → {target2}
   Observations: {observation1}, {observation2}

[GRAPH] {entity_name2} ({entity_type2})
   Observations: {observation}

With --mem0 (combined results):

🔍 Found {count} results matching "{query}":

[GRAPH] {entity_name} ({entity_type})
   → {relation} → {target}
   Observations: {observation}

[GRAPH] {entity_name2} ({entity_type2})
   Observations: {observation}

[MEM0] [{time ago}] ({category}) {memory text}

[MEM0] [{time ago}] ({category}) {memory text}

[CROSS-REF] {memory text} (linked to {N} graph entities)
   📊 Linked entities: {entity1}, {entity2}

With --mem0 when MEM0_API_KEY not configured:

🔍 Found {count} results matching "{query}":

[GRAPH] {entity_name} ({entity_type})
   → {relation} → {target}
   Observations: {observation}

⚠️ mem0 search requested but MEM0_API_KEY not configured (graph-only results)

High Context Pressure (>85%):

🔍 Found 12 matches (showing 3 due to context pressure at 87%)

[GRAPH] pgvector (Technology)
   → USED_FOR → RAG
[GRAPH] cursor-pagination (Pattern)
[GRAPH] database-engineer (Agent)
   → RECOMMENDS → pgvector

More results available. Use /recall --limit 10 to override.

6. Handle No Results

🔍 No results found matching "{query}"

Searched:
• Knowledge graph: 0 entities

Try:
• Broader search terms
• /remember to store new decisions
• --global flag to search cross-project best practices
• --mem0 flag to include cloud semantic search

Time Formatting

DurationDisplay
< 1 day"today"
1 day"yesterday"
2-7 days"X days ago"
1-4 weeks"X weeks ago"
> 4 weeks"X months ago"

Examples

Input: /recall database

Output:

🔍 Found 3 results matching "database":

[GRAPH] PostgreSQL (Technology)
   → CHOSEN_FOR → ACID-requirements
   → USED_WITH → pgvector
   Observations: Chosen for ACID requirements and team familiarity

[GRAPH] database-engineer (Agent)
   → RECOMMENDS → pgvector
   → RECOMMENDS → cursor-pagination
   Observations: Uses pgvector for RAG applications

[GRAPH] cursor-pagination (Pattern)
   Observations: Scales well for large datasets

Category Filter

Input: /recall --category architecture API

Output:

🔍 Found 2 results matching "API" (category: architecture):

[GRAPH] api-gateway (Architecture)
   → IMPLEMENTS → rate-limiting
   → USES → JWT-authentication
   Observations: Central entry point for all services

[GRAPH] REST-API (Pattern)
   → FOLLOWS → OpenAPI-spec
   Observations: Standard for external-facing APIs

Input: /recall --mem0 database

Output:

🔍 Found 5 results matching "database":

[GRAPH] PostgreSQL (Technology)
   → CHOSEN_FOR → ACID-requirements
   Observations: Chosen for ACID requirements

[GRAPH] database-engineer (Agent)
   → RECOMMENDS → pgvector
   Observations: Uses pgvector for RAG

[MEM0] [2 days ago] (decision) PostgreSQL chosen for ACID requirements and team familiarity

[MEM0] [1 week ago] (pattern) Database connection pooling with pool_size=10, max_overflow=20

[CROSS-REF] [3 days ago] pgvector for RAG applications (linked to 2 entities)
   📊 Linked: database-engineer, pgvector

Input: /recall --agent backend-system-architect "API patterns"

Output:

🔍 Found 2 results from backend-system-architect:

[GRAPH] backend-system-architect (Agent)
   → RECOMMENDS → cursor-pagination
   → RECOMMENDS → repository-pattern
   Observations: Use versioned endpoints: /api/v1/, /api/v2/

[GRAPH] repository-pattern (Pattern)
   Observations: Separate controllers, services, and repositories

Input: /recall --global --category pagination

Output:

🔍 Found 3 GLOBAL best practices (pagination):

[GRAPH] cursor-pagination (Pattern)
   → SCALES_FOR → large-datasets
   → PREFERRED_OVER → offset-pagination
   Observations: From project: ecommerce, analytics, cms

[GRAPH] keyset-pagination (Pattern)
   → USED_FOR → real-time-feeds
   Observations: From project: analytics

[GRAPH] offset-pagination (AntiPattern)
   Observations: Caused timeouts on 1M+ rows

Relationship Query

Input: /recall what does database-engineer recommend

Output:

🔍 Found relationships for database-engineer:

[GRAPH] database-engineer (Agent)
   → RECOMMENDS → pgvector
   → RECOMMENDS → cursor-pagination
   → RECOMMENDS → connection-pooling
   → USES → PostgreSQL
   Observations: Specialist in database architecture
  • remember: Store information for later recall

Error Handling

  • If knowledge graph unavailable, show configuration instructions
  • If --mem0 requested without MEM0_API_KEY, proceed with graph-only and notify user
  • If search query empty, show recent entities instead
  • If no results, suggest alternatives
  • If --agent used without agent-id, show available agents
  • If --global returns no results, suggest storing with /remember --global
  • If --mem0 returns partial results (mem0 failed), show graph results with degradation notice

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon