
recall
by yonatangross
The Complete AI Development Toolkit for Claude Code — 159 skills, 34 agents, 20 commands, 144 hooks. Production-ready patterns for FastAPI, React 19, LangGraph, security, and testing.
SKILL.md
name: recall description: Search and retrieve decisions and patterns from knowledge graph. Use when recalling patterns, retrieving memories, finding past decisions. context: inherit version: 2.1.0 author: OrchestKit tags: [memory, search, decisions, patterns, graph-memory, mem0, unified-memory] user-invocable: true
Recall - Search Knowledge Graph
Search past decisions and patterns from the knowledge graph with optional cloud semantic search enhancement.
Graph-First Architecture (v2.1)
The recall skill uses graph memory as PRIMARY search:
- Knowledge Graph (PRIMARY): Entity and relationship search via
mcp__memory__search_nodes- FREE, zero-config, always works - Semantic Memory (mem0): Optional cloud search via
search-memories.pyscript - requires MEM0_API_KEY, use with--mem0flag
Benefits of Graph-First:
- Zero configuration required - works out of the box
- Explicit entity and relationship queries
- Fast local search with no network latency
- No cloud dependency for basic operation
- Optional cloud enhancement with
--mem0flag for semantic similarity search
Overview
- Finding past architectural decisions
- Searching for recorded patterns
- Looking up project context
- Retrieving stored knowledge
- Querying cross-project best practices
- Finding entity relationships
Usage
/recall <search query>
/recall --category <category> <search query>
/recall --limit <number> <search query>
# Cloud-enhanced search (v2.1.0+)
/recall --mem0 <query> # Search BOTH graph AND mem0 cloud
/recall --mem0 --limit 20 <query> # More results from both systems
# Scoped search
/recall --agent <agent-id> <query> # Filter by agent scope
/recall --global <query> # Search cross-project best practices
Advanced Flags
| Flag | Behavior |
|---|---|
| (default) | Search graph only |
--mem0 | Search BOTH graph and mem0 cloud |
--limit <n> | Max results (default: 10) |
--category <cat> | Filter by category |
--agent <agent-id> | Filter results to a specific agent's memories |
--global | Search cross-project best practices |
Context-Aware Result Limits (CC 2.1.6)
Result limits automatically adjust based on context_window.used_percentage:
| Context Usage | Default Limit | Behavior |
|---|---|---|
| 0-70% | 10 results | Full results with details |
| 70-85% | 5 results | Reduced, summarized results |
| >85% | 3 results | Minimal with "more available" hint |
Workflow
1. Parse Input
Check for --category <category> flag
Check for --limit <number> flag
Check for --mem0 flag → search_mem0: true
Check for --agent <agent-id> flag → filter by agent_id
Check for --global flag → search global scope
Extract the search query
2. Search Knowledge Graph (PRIMARY)
Use mcp__memory__search_nodes:
{
"query": "user's search query"
}
Knowledge Graph Search:
- Searches entity names, types, and observations
- Returns entities with their relationships
- Finds patterns like "X uses Y", "X recommends Y"
Entity Types to Look For:
Technology: Tools, frameworks, databases (pgvector, PostgreSQL, React)Agent: OrchestKit agents (database-engineer, backend-system-architect)Pattern: Named patterns (cursor-pagination, connection-pooling)Decision: Architectural decisionsProject: Project-specific contextAntiPattern: Failed patterns
3. Search mem0 (OPTIONAL - only if --mem0 flag)
Skip if --mem0 flag NOT set or MEM0_API_KEY not configured.
Execute the script IN PARALLEL with step 2:
!bash skills/mem0-memory/scripts/crud/search-memories.py \
--query "user's search query" \
--user-id "orchestkit-{project-name}-decisions" \
--limit 10 \
--enable-graph
User ID Selection:
- Default:
orchestkit-{project-name}-decisions - With
--global:orchestkit-global-best-practices
Filter Construction:
- Always include
user_idfilter - With
--category: Add{ "metadata.category": "{category}" }to AND array - With
--agent: Add{ "agent_id": "ork:{agent-id}" }to AND array
4. Merge and Deduplicate Results (if --mem0)
Only when both systems return results:
- Collect results from both systems
- For each mem0 memory, check if its text matches a graph entity observation
- If matched, mark as
[CROSS-REF]and merge metadata - Remove pure duplicates (same content from both systems)
- Sort: graph results first, then mem0 results, cross-refs highlighted
5. Format Results
Graph-Only Results (default):
🔍 Found {count} results matching "{query}":
[GRAPH] {entity_name} ({entity_type})
→ {relation1} → {target1}
→ {relation2} → {target2}
Observations: {observation1}, {observation2}
[GRAPH] {entity_name2} ({entity_type2})
Observations: {observation}
With --mem0 (combined results):
🔍 Found {count} results matching "{query}":
[GRAPH] {entity_name} ({entity_type})
→ {relation} → {target}
Observations: {observation}
[GRAPH] {entity_name2} ({entity_type2})
Observations: {observation}
[MEM0] [{time ago}] ({category}) {memory text}
[MEM0] [{time ago}] ({category}) {memory text}
[CROSS-REF] {memory text} (linked to {N} graph entities)
📊 Linked entities: {entity1}, {entity2}
With --mem0 when MEM0_API_KEY not configured:
🔍 Found {count} results matching "{query}":
[GRAPH] {entity_name} ({entity_type})
→ {relation} → {target}
Observations: {observation}
⚠️ mem0 search requested but MEM0_API_KEY not configured (graph-only results)
High Context Pressure (>85%):
🔍 Found 12 matches (showing 3 due to context pressure at 87%)
[GRAPH] pgvector (Technology)
→ USED_FOR → RAG
[GRAPH] cursor-pagination (Pattern)
[GRAPH] database-engineer (Agent)
→ RECOMMENDS → pgvector
More results available. Use /recall --limit 10 to override.
6. Handle No Results
🔍 No results found matching "{query}"
Searched:
• Knowledge graph: 0 entities
Try:
• Broader search terms
• /remember to store new decisions
• --global flag to search cross-project best practices
• --mem0 flag to include cloud semantic search
Time Formatting
| Duration | Display |
|---|---|
| < 1 day | "today" |
| 1 day | "yesterday" |
| 2-7 days | "X days ago" |
| 1-4 weeks | "X weeks ago" |
| > 4 weeks | "X months ago" |
Examples
Basic Graph Search
Input: /recall database
Output:
🔍 Found 3 results matching "database":
[GRAPH] PostgreSQL (Technology)
→ CHOSEN_FOR → ACID-requirements
→ USED_WITH → pgvector
Observations: Chosen for ACID requirements and team familiarity
[GRAPH] database-engineer (Agent)
→ RECOMMENDS → pgvector
→ RECOMMENDS → cursor-pagination
Observations: Uses pgvector for RAG applications
[GRAPH] cursor-pagination (Pattern)
Observations: Scales well for large datasets
Category Filter
Input: /recall --category architecture API
Output:
🔍 Found 2 results matching "API" (category: architecture):
[GRAPH] api-gateway (Architecture)
→ IMPLEMENTS → rate-limiting
→ USES → JWT-authentication
Observations: Central entry point for all services
[GRAPH] REST-API (Pattern)
→ FOLLOWS → OpenAPI-spec
Observations: Standard for external-facing APIs
Cloud-Enhanced Search
Input: /recall --mem0 database
Output:
🔍 Found 5 results matching "database":
[GRAPH] PostgreSQL (Technology)
→ CHOSEN_FOR → ACID-requirements
Observations: Chosen for ACID requirements
[GRAPH] database-engineer (Agent)
→ RECOMMENDS → pgvector
Observations: Uses pgvector for RAG
[MEM0] [2 days ago] (decision) PostgreSQL chosen for ACID requirements and team familiarity
[MEM0] [1 week ago] (pattern) Database connection pooling with pool_size=10, max_overflow=20
[CROSS-REF] [3 days ago] pgvector for RAG applications (linked to 2 entities)
📊 Linked: database-engineer, pgvector
Agent-Scoped Search
Input: /recall --agent backend-system-architect "API patterns"
Output:
🔍 Found 2 results from backend-system-architect:
[GRAPH] backend-system-architect (Agent)
→ RECOMMENDS → cursor-pagination
→ RECOMMENDS → repository-pattern
Observations: Use versioned endpoints: /api/v1/, /api/v2/
[GRAPH] repository-pattern (Pattern)
Observations: Separate controllers, services, and repositories
Cross-Project Search
Input: /recall --global --category pagination
Output:
🔍 Found 3 GLOBAL best practices (pagination):
[GRAPH] cursor-pagination (Pattern)
→ SCALES_FOR → large-datasets
→ PREFERRED_OVER → offset-pagination
Observations: From project: ecommerce, analytics, cms
[GRAPH] keyset-pagination (Pattern)
→ USED_FOR → real-time-feeds
Observations: From project: analytics
[GRAPH] offset-pagination (AntiPattern)
Observations: Caused timeouts on 1M+ rows
Relationship Query
Input: /recall what does database-engineer recommend
Output:
🔍 Found relationships for database-engineer:
[GRAPH] database-engineer (Agent)
→ RECOMMENDS → pgvector
→ RECOMMENDS → cursor-pagination
→ RECOMMENDS → connection-pooling
→ USES → PostgreSQL
Observations: Specialist in database architecture
Related Skills
- remember: Store information for later recall
Error Handling
- If knowledge graph unavailable, show configuration instructions
- If --mem0 requested without MEM0_API_KEY, proceed with graph-only and notify user
- If search query empty, show recent entities instead
- If no results, suggest alternatives
- If --agent used without agent-id, show available agents
- If --global returns no results, suggest storing with /remember --global
- If --mem0 returns partial results (mem0 failed), show graph results with degradation notice
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
