
mcp-server-building
by yonatangross
The Complete AI Development Toolkit for Claude Code — 159 skills, 34 agents, 20 commands, 144 hooks. Production-ready patterns for FastAPI, React 19, LangGraph, security, and testing.
SKILL.md
name: mcp-server-building description: Building MCP (Model Context Protocol) servers for Claude extensibility. Use when creating MCP servers, building custom Claude tools, extending Claude with external integrations, or developing tool packages for Claude Desktop. tags: [mcp, server, tools, integration] context: fork agent: backend-system-architect version: 1.0.0 author: OrchestKit user-invocable: false
MCP Server Building
Build custom MCP servers to extend Claude with tools, resources, and prompts.
Overview
- Extending Claude with custom tools and capabilities
- Integrating external APIs and services with Claude
- Building domain-specific Claude extensions
- Creating reusable tool packages for Claude Desktop
Core Concepts
MCP Architecture
+-------------+ JSON-RPC +-------------+
| Claude |<----------------->| MCP Server |
| (Host) | stdio/SSE/WS | (Tools) |
+-------------+ +-------------+
Three Primitives:
- Tools: Functions Claude can call (with user approval)
- Resources: Data Claude can read (files, API responses)
- Prompts: Pre-defined prompt templates
Quick Start
Minimal Python Server (stdio)
# server.py
from mcp.server import Server
from mcp.server.stdio import stdio_server
from mcp.types import Tool, TextContent
server = Server("my-tools")
@server.list_tools()
async def list_tools() -> list[Tool]:
return [
Tool(
name="greet",
description="Greet a user by name",
inputSchema={
"type": "object",
"properties": {
"name": {"type": "string", "description": "Name to greet"}
},
"required": ["name"]
}
)
]
@server.call_tool()
async def call_tool(name: str, arguments: dict) -> list[TextContent]:
if name == "greet":
return [TextContent(type="text", text=f"Hello, {arguments['name']}!")]
raise ValueError(f"Unknown tool: {name}")
async def main():
async with stdio_server() as (read, write):
await server.run(read, write, server.create_initialization_options())
if __name__ == "__main__":
import asyncio
asyncio.run(main())
TypeScript Server (recommended for production)
// src/index.ts
import { Server } from "@modelcontextprotocol/sdk/server/index.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import {
CallToolRequestSchema,
ListToolsRequestSchema,
} from "@modelcontextprotocol/sdk/types.js";
const server = new Server(
{ name: "my-tools", version: "1.0.0" },
{ capabilities: { tools: {} } }
);
server.setRequestHandler(ListToolsRequestSchema, async () => ({
tools: [
{
name: "fetch_url",
description: "Fetch content from a URL",
inputSchema: {
type: "object",
properties: {
url: { type: "string", description: "URL to fetch" },
},
required: ["url"],
},
},
],
}));
server.setRequestHandler(CallToolRequestSchema, async (request) => {
if (request.params.name === "fetch_url") {
const { url } = request.params.arguments as { url: string };
const response = await fetch(url);
const text = await response.text();
return { content: [{ type: "text", text }] };
}
throw new Error("Unknown tool: " + request.params.name);
});
const transport = new StdioServerTransport();
await server.connect(transport);
Tool Definition Patterns
Input Schema Best Practices
Tool(
name="search_database",
description="Search the product database. Returns up to 10 results.",
inputSchema={
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search query (supports wildcards with *)"
},
"category": {
"type": "string",
"enum": ["electronics", "clothing", "books"],
"description": "Filter by category"
},
"max_results": {
"type": "integer",
"minimum": 1,
"maximum": 50,
"default": 10,
"description": "Maximum results to return"
}
},
"required": ["query"]
}
)
Guidelines:
- Always include
descriptionfor each property - Use
enumfor fixed option sets - Set
minimum/maximumfor numbers - Mark
requiredfields explicitly - Provide
defaultvalues where sensible
Error Handling
@server.call_tool()
async def call_tool(name: str, arguments: dict) -> list[TextContent]:
try:
if name == "query_api":
result = await external_api.query(arguments["query"])
return [TextContent(type="text", text=json.dumps(result))]
except ExternalAPIError as e:
# Return error as text - Claude will see and handle it
return [TextContent(
type="text",
text=f"Error: API returned {e.status_code}: {e.message}"
)]
except Exception as e:
# Log internally, return user-friendly message
logger.exception("Tool execution failed")
return [TextContent(
type="text",
text=f"Error: {type(e).__name__}: {str(e)}"
)]
Resource Patterns
File Resources
@server.list_resources()
async def list_resources() -> list[Resource]:
return [
Resource(
uri="file:///config/settings.json",
name="Settings",
mimeType="application/json",
description="Application configuration"
)
]
@server.read_resource()
async def read_resource(uri: str) -> str:
if uri == "file:///config/settings.json":
return Path("settings.json").read_text()
raise ValueError(f"Unknown resource: {uri}")
Dynamic Resources (API data)
@server.list_resources()
async def list_resources() -> list[Resource]:
# List available data sources
return [
Resource(
uri="api://users/current",
name="Current User",
mimeType="application/json"
),
Resource(
uri="api://metrics/today",
name="Today's Metrics",
mimeType="application/json"
)
]
@server.read_resource()
async def read_resource(uri: str) -> str:
if uri.startswith("api://"):
endpoint = uri.replace("api://", "")
data = await api_client.get(endpoint)
return json.dumps(data, indent=2)
Transport Options
stdio (recommended for CLI)
// claude_desktop_config.json
{
"mcpServers": {
"my-tools": {
"command": "python",
"args": ["/path/to/server.py"],
"env": {
"API_KEY": "xxx"
}
}
}
}
SSE (for web deployments)
from mcp.server.sse import SseServerTransport
from starlette.applications import Starlette
from starlette.routing import Route
sse = SseServerTransport("/messages")
async def handle_sse(request):
async with sse.connect_sse(
request.scope, request.receive, request._send
) as streams:
await server.run(
streams[0], streams[1],
server.create_initialization_options()
)
app = Starlette(routes=[
Route("/sse", endpoint=handle_sse),
Route("/messages", endpoint=sse.handle_post_message, methods=["POST"]),
])
Configuration in Claude Desktop
// ~/Library/Application Support/Claude/claude_desktop_config.json (macOS)
// %APPDATA%\Claude\claude_desktop_config.json (Windows)
{
"mcpServers": {
"database": {
"command": "npx",
"args": ["-y", "@myorg/db-tools"],
"env": {
"DATABASE_URL": "postgres://..."
}
},
"python-tools": {
"command": "uv",
"args": ["run", "python", "-m", "my_mcp_server"],
"cwd": "/path/to/project"
}
}
}
Testing
Manual Testing
# Test with MCP Inspector
npx @modelcontextprotocol/inspector python server.py
Automated Testing
import pytest
from mcp.client import Client
from mcp.client.stdio import stdio_client
@pytest.mark.asyncio
async def test_greet_tool():
async with stdio_client("python", ["server.py"]) as (read, write):
client = Client("test", "1.0.0")
await client.connect(read, write)
# List tools
tools = await client.list_tools()
assert any(t.name == "greet" for t in tools.tools)
# Call tool
result = await client.call_tool("greet", {"name": "World"})
assert "Hello, World!" in result.content[0].text
Common Patterns
Caching Expensive Operations
from functools import lru_cache
from datetime import datetime, timedelta
_cache = {}
_cache_ttl = timedelta(minutes=5)
async def get_cached_data(key: str) -> dict:
now = datetime.now()
if key in _cache:
data, timestamp = _cache[key]
if now - timestamp < _cache_ttl:
return data
data = await expensive_fetch(key)
_cache[key] = (data, now)
return data
Rate Limiting
import asyncio
from collections import defaultdict
_request_times = defaultdict(list)
MAX_REQUESTS_PER_MINUTE = 60
async def rate_limited_call(user_id: str, func, *args):
now = asyncio.get_event_loop().time()
_request_times[user_id] = [
t for t in _request_times[user_id]
if now - t < 60
]
if len(_request_times[user_id]) >= MAX_REQUESTS_PER_MINUTE:
raise Exception("Rate limit exceeded. Try again in a minute.")
_request_times[user_id].append(now)
return await func(*args)
Anti-Patterns
- Stateful tools without cleanup: Always clean up connections/resources
- Blocking synchronous code: Use
asyncio.to_thread()for blocking ops - Missing input validation: Always validate before processing
- Secrets in tool output: Never return API keys or credentials
- Unbounded responses: Limit response sizes (Claude has context limits)
CC 2.1.7: Auto-Discovery Optimization
MCP Search Discovery
CC 2.1.7 introduces automatic MCP discovery via MCPSearch. When context exceeds 10%, your MCP tools are still available but discovered on-demand rather than pre-loaded.
Optimizing for Auto-Discovery
Make your tools easily discoverable by using descriptive names and keywords:
# GOOD: Descriptive, searchable
Tool(
name="query_product_database",
description="""
Search the product catalog database.
KEYWORDS: products, catalog, inventory, SKU, search
USE WHEN: User needs product info, pricing, availability
""",
inputSchema={...}
)
# BAD: Generic, hard to discover
Tool(
name="search",
description="Search things",
inputSchema={...}
)
Token-Efficient Tool Definitions
Since tool definitions consume context when loaded, optimize for size:
# Verbose: ~200 tokens
Tool(
name="search_database",
description="This tool allows you to search our comprehensive database...",
inputSchema={...} # detailed descriptions
)
# Concise: ~80 tokens
Tool(
name="search_database",
description="Search database. Supports: full-text, filters. Returns: {id, title, snippet}",
inputSchema={...} # brief descriptions
)
Discovery Metadata Pattern
Add discovery hints to improve MCPSearch matching:
Tool(
name="analyze_logs",
description="""
Analyze application logs for errors.
Category: Observability
Keywords: logs, errors, debugging, monitoring
Triggers: "check logs", "find errors", "debug issue"
""",
inputSchema={...}
)
Related Skills
function-calling- LLM function calling patterns that MCP tools implementagent-loops- Agentic patterns that leverage MCP tools for actionsinput-validation- Input validation for MCP tool argumentsllm-safety-patterns- Security patterns for MCP tool implementations
Key Decisions
| Decision | Choice | Rationale |
|---|---|---|
| Transport protocol | stdio for CLI, SSE for web | stdio is simplest, SSE for browser deployments |
| Language choice | TypeScript for production | Better SDK support, type safety |
| Tool descriptions | Concise with keywords | Optimize for CC 2.1.7 auto-discovery |
| Error handling | Return errors as text content | Claude can interpret and retry |
Resources
- MCP Specification: https://modelcontextprotocol.io/docs
- Python SDK: https://github.com/modelcontextprotocol/python-sdk
- TypeScript SDK: https://github.com/modelcontextprotocol/typescript-sdk
- Example Servers: https://github.com/modelcontextprotocol/servers
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
