Back to list
yonatangross

golden-dataset-validation

by yonatangross

The Complete AI Development Toolkit for Claude Code — 159 skills, 34 agents, 20 commands, 144 hooks. Production-ready patterns for FastAPI, React 19, LangGraph, security, and testing.

29🍴 4📅 Jan 23, 2026

SKILL.md


name: golden-dataset-validation description: Use when validating golden dataset quality. Runs schema checks, duplicate detection, and coverage analysis to ensure dataset integrity for AI evaluation. context: fork agent: data-pipeline-engineer version: 1.0.0 author: OrchestKit AI Agent Hub tags: [golden-dataset, validation, integrity, schema, duplicate-detection, 2025] allowed-tools:

  • Read
  • Grep
  • Glob user-invocable: false

Golden Dataset Validation

Ensure data integrity, prevent duplicates, and maintain quality standards

Overview

This skill provides comprehensive validation patterns for the golden dataset, ensuring every entry meets quality standards before inclusion.

When to use this skill:

  • Validating new documents before adding
  • Running integrity checks on existing dataset
  • Detecting duplicate or similar content
  • Analyzing coverage gaps
  • Pre-commit validation hooks

Schema Validation

Document Schema (v2.0)

{
  "$schema": "http://json-schema.org/draft-07/schema#",
  "type": "object",
  "required": ["id", "title", "source_url", "content_type", "sections"],
  "properties": {
    "id": {
      "type": "string",
      "pattern": "^[a-z0-9-]+$",
      "description": "Unique kebab-case identifier"
    },
    "title": {
      "type": "string",
      "minLength": 10,
      "maxLength": 200
    },
    "source_url": {
      "type": "string",
      "format": "uri",
      "description": "Canonical source URL (NOT placeholder)"
    },
    "content_type": {
      "type": "string",
      "enum": ["article", "tutorial", "research_paper", "documentation", "video_transcript", "code_repository"]
    },
    "bucket": {
      "type": "string",
      "enum": ["short", "long"]
    },
    "tags": {
      "type": "array",
      "items": {"type": "string"},
      "minItems": 2,
      "maxItems": 10
    },
    "sections": {
      "type": "array",
      "minItems": 1,
      "items": {
        "type": "object",
        "required": ["id", "title", "content"],
        "properties": {
          "id": {"type": "string", "pattern": "^[a-z0-9-/]+$"},
          "title": {"type": "string"},
          "content": {"type": "string", "minLength": 50},
          "granularity": {"enum": ["coarse", "fine", "summary"]}
        }
      }
    }
  }
}

Query Schema

{
  "type": "object",
  "required": ["id", "query", "difficulty", "expected_chunks", "min_score"],
  "properties": {
    "id": {"type": "string", "pattern": "^q-[a-z0-9-]+$"},
    "query": {"type": "string", "minLength": 5, "maxLength": 500},
    "modes": {"type": "array", "items": {"enum": ["semantic", "keyword", "hybrid"]}},
    "category": {"enum": ["specific", "broad", "negative", "edge", "coarse-to-fine"]},
    "difficulty": {"enum": ["trivial", "easy", "medium", "hard", "adversarial"]},
    "expected_chunks": {"type": "array", "items": {"type": "string"}, "minItems": 1},
    "min_score": {"type": "number", "minimum": 0, "maximum": 1}
  }
}

Validation Rules Summary

RulePurposeSeverity
No Placeholder URLsEnsure real canonical URLsError
Unique IdentifiersNo duplicate doc/query/section IDsError
Referential IntegrityQuery chunks reference valid sectionsError
Content QualityTitle/content length, tag countWarning
Difficulty DistributionBalanced query difficulty levelsWarning

Quick Reference

Duplicate Detection Thresholds

SimilarityAction
>= 0.90Block - Content too similar
>= 0.85Warn - High similarity detected
>= 0.80Note - Similar content exists
< 0.80Allow - Sufficiently unique

Coverage Requirements

MetricMinimum
Tutorials>= 15% of documents
Research papers>= 5% of documents
Domain coverage>= 5 docs per expected domain
Hard queries>= 10% of queries
Adversarial queries>= 5% of queries

Difficulty Distribution Requirements

LevelMinimum Count
trivial3
easy3
medium5
hard3

References

For detailed implementation patterns, see:

  • references/validation-rules.md - URL validation, ID uniqueness, referential integrity, content quality, and duplicate detection code
  • references/quality-metrics.md - Coverage analysis, pre-addition validation workflow, full dataset validation, and CLI/hook integration

  • golden-dataset-curation - Quality criteria and workflows
  • golden-dataset-management - Backup/restore operations
  • pgvector-search - Embedding-based duplicate detection

Version: 1.0.0 (December 2025) Issue: #599

Capability Details

schema-validation

Keywords: schema, validation, schema check, format validation Solves:

  • Validate entries against document schema
  • Check required fields are present
  • Verify data types and constraints

duplicate-detection

Keywords: duplicate, detection, deduplication, similarity check Solves:

  • Detect duplicate or near-duplicate entries
  • Use semantic similarity for fuzzy matching
  • Prevent redundant entries in dataset

referential-integrity

Keywords: referential, integrity, foreign key, relationship Solves:

  • Verify relationships between documents and queries
  • Check source URL mappings are valid
  • Ensure cross-references are consistent

coverage-analysis

Keywords: coverage, analysis, distribution, completeness Solves:

  • Analyze dataset coverage across domains
  • Identify gaps in difficulty distribution
  • Report coverage metrics and recommendations

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon