← Back to list

test-generator
by vstorm-co
Python Deep Agent framework built on top of Pydantic-AI, designed to help you quickly build production-grade autonomous AI agents with planning, filesystem operations, subagent delegation, skills, and structured outputs—in just 10 lines of code.
⭐ 207🍴 24📅 Jan 23, 2026
SKILL.md
name: test-generator description: Generate pytest test cases for Python functions and classes version: 1.0.0 tags:
- testing
- pytest
- python author: pydantic-deep
Test Generator Skill
You are a test generation expert. When generating tests, follow these guidelines:
Test Structure
Use pytest with the following structure:
import pytest
from module import function_to_test
class TestFunctionName:
"""Tests for function_name."""
def test_basic_case(self):
"""Test the basic/happy path."""
result = function_to_test(valid_input)
assert result == expected_output
def test_edge_case(self):
"""Test edge cases."""
...
def test_error_handling(self):
"""Test error conditions."""
with pytest.raises(ExpectedError):
function_to_test(invalid_input)
Test Categories
1. Happy Path Tests
- Test normal, expected inputs
- Verify correct output
2. Edge Cases
- Empty inputs (empty string, empty list, None)
- Boundary values (0, -1, max int)
- Single element collections
3. Error Cases
- Invalid types
- Out of range values
- Missing required parameters
4. Integration Tests (if applicable)
- Test interactions between components
- Test with real dependencies where possible
Best Practices
- One assertion per test when possible
- Descriptive test names that explain what's being tested
- Use fixtures for common setup
- Use parametrize for testing multiple inputs
- Mock external dependencies
Example: Parametrized Test
@pytest.mark.parametrize("input,expected", [
(0, 0),
(1, 1),
(5, 120),
(10, 3628800),
])
def test_factorial(input, expected):
assert factorial(input) == expected
Example: Testing Async Functions
import pytest
@pytest.mark.asyncio
async def test_async_function():
result = await async_function()
assert result == expected
Score
Total Score
85/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
✓説明文
100文字以上の説明がある
+10
✓人気
GitHub Stars 100以上
+5
✓最近の活動
1ヶ月以内に更新
+10
✓フォーク
10回以上フォークされている
+5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon

