
aflpp
by trailofbits
Trail of Bits Claude Code skills for security research, vulnerability detection, and audit workflows
Use Cases
Work Efficiency
Streamline daily tasks and improve productivity.
Project Management
Assist with task management and project tracking.
Team Collaboration
Improve team communication and collaboration.
SKILL.md
name: aflpp type: fuzzer description: > AFL++ is a fork of AFL with better fuzzing performance and advanced features. Use for multi-core fuzzing of C/C++ projects.
AFL++
AFL++ is a fork of the original AFL fuzzer that offers better fuzzing performance and more advanced features while maintaining stability. A major benefit over libFuzzer is that AFL++ has stable support for running fuzzing campaigns on multiple cores, making it ideal for large-scale fuzzing efforts.
When to Use
| Fuzzer | Best For | Complexity |
|---|---|---|
| AFL++ | Multi-core fuzzing, diverse mutations, mature projects | Medium |
| libFuzzer | Quick setup, single-threaded, simple harnesses | Low |
| LibAFL | Custom fuzzers, research, advanced use cases | High |
Choose AFL++ when:
- You need multi-core fuzzing to maximize throughput
- Your project can be compiled with Clang or GCC
- You want diverse mutation strategies and mature tooling
- libFuzzer has plateaued and you need more coverage
- You're fuzzing production codebases that benefit from parallel execution
Quick Start
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
// Call your code with fuzzer-provided data
check_buf((char*)data, size);
return 0;
}
Compile and run:
# Setup AFL++ wrapper script first (see Installation)
./afl++ docker afl-clang-fast++ -DNO_MAIN=1 -O2 -fsanitize=fuzzer harness.cc main.cc -o fuzz
mkdir seeds && echo "aaaa" > seeds/minimal_seed
./afl++ docker afl-fuzz -i seeds -o out -- ./fuzz
Installation
AFL++ has many dependencies including LLVM, Python, and Rust. We recommend using a current Debian or Ubuntu distribution for fuzzing with AFL++.
| Method | When to Use | Supported Compilers |
|---|---|---|
| Ubuntu/Debian repos | Recent Ubuntu, basic features only | Ubuntu 23.10: Clang 14 & GCC 13Debian 12: Clang 14 & GCC 12 |
| Docker (from Docker Hub) | Specific AFL++ version, Apple Silicon support | As of 4.35c: Clang 19 & GCC 11 |
| Docker (from source) | Test unreleased features, apply patches | Configurable in Dockerfile |
| From source | Avoid Docker, need specific patches | Adjustable via LLVM_CONFIG env var |
Ubuntu/Debian
Prior to installing afl++, check the clang version dependency of the packge with apt-cache show afl++, and install the matching lld version (e.g., lld-17).
apt install afl++ lld-17
Docker (from Docker Hub)
docker pull aflplusplus/aflplusplus:stable
Docker (from source)
git clone --depth 1 --branch stable https://github.com/AFLplusplus/AFLplusplus
cd AFLplusplus
docker build -t aflplusplus .
From source
Refer to the Dockerfile for Ubuntu version requirements and dependencies. Set LLVM_CONFIG to specify Clang version (e.g., llvm-config-18).
Wrapper Script Setup
Create a wrapper script to run AFL++ on host or Docker:
cat <<'EOF' > ./afl++
#!/bin/sh
AFL_VERSION="${AFL_VERSION:-"stable"}"
case "$1" in
host)
shift
bash -c "$*"
;;
docker)
shift
/usr/bin/env docker run -ti \
--privileged \
-v ./:/src \
--rm \
--name afl_fuzzing \
"aflplusplus/aflplusplus:$AFL_VERSION" \
bash -c "cd /src && bash -c \"$*\""
;;
*)
echo "Usage: $0 {host|docker}"
exit 1
;;
esac
EOF
chmod +x ./afl++
Security Warning: The afl-system-config and afl-persistent-config scripts require root privileges and disable OS security features. Do not fuzz on production systems or your development environment. Use a dedicated VM instead.
System Configuration
Run after each reboot for up to 15% more executions per second:
./afl++ <host/docker> afl-system-config
For maximum performance, disable kernel security mitigations (requires grub bootloader, not supported in Docker):
./afl++ host afl-persistent-config
update-grub
reboot
./afl++ <host/docker> afl-system-config
Verify with cat /proc/cmdline - output should include mitigations=off.
Writing a Harness
Harness Structure
AFL++ supports libFuzzer-style harnesses:
#include <stdint.h>
#include <stddef.h>
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
// 1. Validate input size if needed
if (size < MIN_SIZE || size > MAX_SIZE) return 0;
// 2. Call target function with fuzz data
target_function(data, size);
// 3. Return 0 (non-zero reserved for future use)
return 0;
}
Harness Rules
| Do | Don't |
|---|---|
| Reset global state between runs | Rely on state from previous runs |
| Handle edge cases gracefully | Exit on invalid input |
| Keep harness deterministic | Use random number generators |
| Free allocated memory | Create memory leaks |
| Validate input sizes | Process unbounded input |
See Also: For detailed harness writing techniques, patterns for handling complex inputs, and advanced strategies, see the fuzz-harness-writing technique skill.
Compilation
AFL++ offers multiple compilation modes with different trade-offs.
Compilation Mode Decision Tree
Choose your compilation mode:
- LTO mode (
afl-clang-lto): Best performance and instrumentation. Try this first. - LLVM mode (
afl-clang-fast): Fall back if LTO fails to compile. - GCC plugin (
afl-gcc-fast): For projects requiring GCC.
Basic Compilation (LLVM mode)
./afl++ <host/docker> afl-clang-fast++ -DNO_MAIN=1 -O2 -fsanitize=fuzzer harness.cc main.cc -o fuzz
GCC Compilation
./afl++ <host/docker> afl-g++-fast -DNO_MAIN=1 -O2 -fsanitize=fuzzer harness.cc main.cc -o fuzz
Important: GCC version must match the version used to compile the AFL++ GCC plugin.
With Sanitizers
./afl++ <host/docker> AFL_USE_ASAN=1 afl-clang-fast++ -DNO_MAIN=1 -O2 -fsanitize=fuzzer harness.cc main.cc -o fuzz
See Also: For detailed sanitizer configuration, common issues, and advanced flags, see the address-sanitizer and undefined-behavior-sanitizer technique skills.
Build Flags
Note that -g is not necessary, it is added by default by the AFL++ compilers.
| Flag | Purpose |
|---|---|
-DNO_MAIN=1 | Skip main function when using libFuzzer harness |
-O2 | Production optimization level (recommended for fuzzing) |
-fsanitize=fuzzer | Enable libFuzzer compatibility mode and adds the fuzzer runtime when linking executable |
-fsanitize=fuzzer-no-link | Instrument without linking fuzzer runtime (for static libraries and object files) |
Corpus Management
Creating Initial Corpus
AFL++ requires at least one non-empty seed file:
mkdir seeds
echo "aaaa" > seeds/minimal_seed
For real projects, gather representative inputs:
- Download example files for the format you're fuzzing
- Extract test cases from the project's test suite
- Use minimal valid inputs for your file format
Corpus Minimization
After a campaign, minimize the corpus to keep only unique coverage:
./afl++ <host/docker> afl-cmin -i out/default/queue -o minimized_corpus -- ./fuzz
See Also: For corpus creation strategies, dictionaries, and seed selection, see the fuzzing-corpus technique skill.
Running Campaigns
Basic Run
./afl++ <host/docker> afl-fuzz -i seeds -o out -- ./fuzz
Setting Environment Variables
./afl++ <host/docker> AFL_FAST_CAL=1 afl-fuzz -i seeds -o out -- ./fuzz
Interpreting Output
The AFL++ UI shows real-time fuzzing statistics:
| Output | Meaning |
|---|---|
| execs/sec | Execution speed - higher is better |
| cycles done | Number of queue passes completed |
| corpus count | Number of unique test cases in queue |
| saved crashes | Number of unique crashes found |
| stability | % of stable edges (should be near 100%) |
Output Directory Structure
out/default/
├── cmdline # How was the SUT invoked?
├── crashes/ # Inputs that crash the SUT
│ └── id:000000,sig:06,src:000002,time:286,execs:13105,op:havoc,rep:4
├── hangs/ # Inputs that hang the SUT
├── queue/ # Test cases reproducing final fuzzer state
│ ├── id:000000,time:0,execs:0,orig:minimal_seed
│ └── id:000001,src:000000,time:0,execs:8,op:havoc,rep:6,+cov
├── fuzzer_stats # Campaign statistics
└── plot_data # Data for plotting
Analyzing Results
View live campaign statistics:
./afl++ <host/docker> afl-whatsup out
Create coverage plots:
apt install gnuplot
./afl++ <host/docker> afl-plot out/default out_graph/
Re-executing Test Cases
./afl++ <host/docker> ./fuzz out/default/crashes/<test_case>
Fuzzer Options
| Option | Purpose |
|---|---|
-G 4000 | Maximum test input length (default: 1048576 bytes) |
-t 1000 | Timeout in milliseconds for each test case (default: 1000ms) |
-m 1000 | Memory limit in megabytes (default: 0 = unlimited) |
-x ./dict.dict | Use dictionary file to guide mutations |
Multi-Core Fuzzing
AFL++ excels at multi-core fuzzing with two major advantages:
- More executions per second (scales linearly with physical cores)
- Asymmetrical fuzzing (e.g., one ASan job, rest without sanitizers)
Starting a Campaign
Start the primary fuzzer (in background):
./afl++ <host/docker> afl-fuzz -M primary -i seeds -o state -- ./fuzz 1>primary.log 2>primary.error &
Start secondary fuzzers (as many as you have cores):
./afl++ <host/docker> afl-fuzz -S secondary01 -i seeds -o state -- ./fuzz 1>secondary01.log 2>secondary01.error &
./afl++ <host/docker> afl-fuzz -S secondary02 -i seeds -o state -- ./fuzz 1>secondary02.log 2>secondary02.error &
Monitoring Multi-Core Campaigns
List all running jobs:
jobs
View live statistics (updates every second):
./afl++ <host/docker> watch -n1 --color afl-whatsup state/
Stopping All Fuzzers
kill $(jobs -p)
Coverage Analysis
AFL++ automatically tracks coverage through edge instrumentation. Coverage information is stored in fuzzer_stats and plot_data.
Measuring Coverage
Use afl-plot to visualize coverage over time:
./afl++ <host/docker> afl-plot out/default out_graph/
Improving Coverage
- Use dictionaries for format-aware fuzzing
- Run longer campaigns (cycles_wo_finds indicates plateau)
- Try different mutation strategies with multi-core fuzzing
- Analyze coverage gaps and add targeted seed inputs
See Also: For detailed coverage analysis techniques, identifying coverage gaps, and systematic coverage improvement, see the coverage-analysis technique skill.
CMPLOG
CMPLOG/RedQueen is the best path constraint solving mechanism available in any fuzzer. To enable it, the fuzz target needs to be instrumented for it. Before building the fuzzing target set the environment variable:
./afl++ <host/docker> AFL_LLVM_CMPLOG=1 make
No special action is needed for compiling and linking the harness.
To run a fuzzer instance with a CMPLOG instrumented fuzzing target, add -c0 to the command like arguments:
./afl++ <host/docker> afl-fuzz -c0 -S cmplog -i seeds -o state -- ./fuzz 1>secondary02.log 2>secondary02.error &
Sanitizer Integration
Sanitizers are essential for finding memory corruption bugs that don't cause immediate crashes.
AddressSanitizer (ASan)
./afl++ <host/docker> AFL_USE_ASAN=1 afl-clang-fast++ -DNO_MAIN=1 -O2 -fsanitize=fuzzer harness.cc main.cc -o fuzz
Note: Memory limit (-m) is not supported with ASan due to 20TB virtual memory reservation.
UndefinedBehaviorSanitizer (UBSan)
./afl++ <host/docker> AFL_USE_UBSAN=1 afl-clang-fast++ -DNO_MAIN=1 -O2 -fsanitize=fuzzer,undefined harness.cc main.cc -o fuzz
Common Sanitizer Issues
| Issue | Solution |
|---|---|
| ASan slows fuzzing | Use only 1 ASan job in multi-core setup |
| Stack exhaustion | Increase stack with ASAN_OPTIONS=stack_size=... |
| GCC version mismatch | Ensure system GCC matches AFL++ plugin version |
See Also: For comprehensive sanitizer configuration and troubleshooting, see the address-sanitizer technique skill.
Advanced Usage
Tips and Tricks
| Tip | Why It Helps |
|---|---|
| Use LLVMFuzzerTestOneInput harnesses where possible | If a fuzzing campaign has at least 85% stability then this is the most efficient fuzzing style. If not then try standard input or file input fuzzing |
| Use dictionaries | Helps fuzzer discover format-specific keywords and magic bytes |
| Set realistic timeouts | Prevents false positives from system load |
| Limit input size | Larger inputs don't necessarily explore more space |
| Monitor stability | Low stability indicates non-deterministic behavior |
Standard Input Fuzzing
AFL++ can fuzz programs reading from stdin without a libFuzzer harness:
./afl++ <host/docker> afl-clang-fast++ -O2 main_stdin.c -o fuzz_stdin
./afl++ <host/docker> afl-fuzz -i seeds -o out -- ./fuzz_stdin
This is slower than persistent mode but requires no harness code.
File Input Fuzzing
For programs that read files, use @@ placeholder:
./afl++ <host/docker> afl-clang-fast++ -O2 main_file.c -o fuzz_file
./afl++ <host/docker> afl-fuzz -i seeds -o out -- ./fuzz_file @@
For better performance, use fmemopen to create file descriptors from memory.
Argument Fuzzing
Fuzz command-line arguments using argv-fuzz-inl.h:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef __AFL_COMPILER
#include "argv-fuzz-inl.h"
#endif
void check_buf(char *buf, size_t buf_len) {
if(buf_len > 0 && buf[0] == 'a') {
if(buf_len > 1 && buf[1] == 'b') {
if(buf_len > 2 && buf[2] == 'c') {
abort();
}
}
}
}
int main(int argc, char *argv[]) {
#ifdef __AFL_COMPILER
AFL_INIT_ARGV();
#endif
if (argc < 2) {
fprintf(stderr, "Usage: %s <input_string>\n", argv[0]);
return 1;
}
char *input_buf = argv[1];
size_t len = strlen(input_buf);
check_buf(input_buf, len);
return 0;
}
Download the header:
curl -O https://raw.githubusercontent.com/AFLplusplus/AFLplusplus/stable/utils/argv_fuzzing/argv-fuzz-inl.h
Compile and run:
./afl++ <host/docker> afl-clang-fast++ -O2 main_arg.c -o fuzz_arg
./afl++ <host/docker> afl-fuzz -i seeds -o out -- ./fuzz_arg
Performance Tuning
| Setting | Impact |
|---|---|
| CPU core count | Linear scaling with physical cores |
| Persistent mode | 10-20x faster than fork server |
-G input size limit | Smaller = faster, but may miss bugs |
| ASan ratio | 1 ASan job per 4-8 non-ASan jobs |
Real-World Examples
Example: libpng
Fuzzing libpng demonstrates fuzzing a C project with static libraries:
# Get source
curl -L -O https://downloads.sourceforge.net/project/libpng/libpng16/1.6.37/libpng-1.6.37.tar.xz
tar xf libpng-1.6.37.tar.xz
cd libpng-1.6.37/
# Install dependencies
apt install zlib1g-dev
# Configure and build static library
export CC=afl-clang-fast CFLAGS=-fsanitize=fuzzer-no-link
export CXX=afl-clang-fast++ CXXFLAGS="$CFLAGS"
./configure --enable-shared=no
export AFL_LLVM_CMPLOG=1
export AFL_USE_ASAN=1
make
# Download harness
curl -O https://raw.githubusercontent.com/glennrp/libpng/f8e5fa92b0e37ab597616f554bee254157998227/contrib/oss-fuzz/libpng_read_fuzzer.cc
# Link fuzzer
export AFL_USE_ASAN=1
$CXX -fsanitize=fuzzer libpng_read_fuzzer.cc .libs/libpng16.a -lz -o fuzz
# Prepare seeds and dictionary
mkdir seeds/
curl -o seeds/input.png https://raw.githubusercontent.com/glennrp/libpng/acfd50ae0ba3198ad734e5d4dec2b05341e50924/contrib/pngsuite/iftp1n3p08.png
curl -O https://raw.githubusercontent.com/glennrp/libpng/2fff013a6935967960a5ae626fc21432807933dd/contrib/oss-fuzz/png.dict
# Start fuzzing
./afl++ <host/docker> afl-fuzz -i seeds -o out -- ./fuzz
Example: CMake-based Project
project(BuggyProgram)
cmake_minimum_required(VERSION 3.0)
add_executable(buggy_program main.cc)
add_executable(fuzz main.cc harness.cc)
target_compile_definitions(fuzz PRIVATE NO_MAIN=1)
target_compile_options(fuzz PRIVATE -O2 -fsanitize=fuzzer-no-link)
target_link_libraries(fuzz -fsanitize=fuzzer)
Build and fuzz:
# Build non-instrumented binary
./afl++ <host/docker> cmake -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ .
./afl++ <host/docker> cmake --build . --target buggy_program
# Build fuzzer
./afl++ <host/docker> cmake -DCMAKE_C_COMPILER=afl-clang-fast -DCMAKE_CXX_COMPILER=afl-clang-fast++ .
./afl++ <host/docker> cmake --build . --target fuzz
# Fuzz
./afl++ <host/docker> afl-fuzz -i seeds -o out -- ./fuzz
Troubleshooting
| Problem | Cause | Solution |
|---|---|---|
| Low exec/sec (<1k) | Not using persistent mode | Create a LLVMFuzzerTestOneInput style harness |
| Low stability (<85%) | Non-deterministic code | Fuzz a program via stdin or file inputs, or create such a harness |
| GCC plugin error | GCC version mismatch | Ensure system GCC matches AFL++ build and install gcc-$GCC_VERSION-plugin-dev |
| No crashes found | Need sanitizers | Recompile with AFL_USE_ASAN=1 |
| Memory limit exceeded | ASan uses 20TB virtual | Remove -m flag when using ASan |
| Docker performance loss | Virtualization overhead | Use bare metal or VM for production fuzzing |
Related Skills
Technique Skills
| Skill | Use Case |
|---|---|
| fuzz-harness-writing | Detailed guidance on writing effective harnesses |
| address-sanitizer | Memory error detection during fuzzing |
| undefined-behavior-sanitizer | Detect undefined behavior bugs |
| fuzzing-corpus | Building and managing seed corpora |
| fuzzing-dictionaries | Creating dictionaries for format-aware fuzzing |
Related Fuzzers
| Skill | When to Consider |
|---|---|
| libfuzzer | Quick prototyping, single-threaded fuzzing is sufficient |
| libafl | Need custom mutators or research-grade features |
Resources
Key External Resources
AFL++ GitHub Repository Official repository with comprehensive documentation, examples, and issue tracker.
Fuzzing in Depth Advanced documentation by the AFL++ team covering instrumentation modes, optimization techniques, and advanced use cases.
AFL++ Under The Hood Technical deep-dive into AFL++ internals, mutation strategies, and coverage tracking mechanisms.
AFL++: Combining Incremental Steps of Fuzzing Research Research paper describing AFL++ architecture and performance improvements over original AFL.
Video Resources
- Fuzzing cURL - Trail of Bits blog post on using AFL++ argument fuzzing for cURL
- Sudo Vulnerability Walkthrough - LiveOverflow series on rediscovering CVE-2021-3156
- Rediscovery of libpng bug - LiveOverflow video on finding CVE-2023-4863
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 1000以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
